K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 9 2020

c.

\(\Leftrightarrow2sin2x.cos2x+\sqrt{3}sin2x=0\)

\(\Leftrightarrow sin2x\left(2cos2x+\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\cos2x=-\frac{\sqrt{3}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\2x=\frac{5\pi}{6}+k2\pi\\2x=-\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=\frac{5\pi}{12}+k\pi\\x=-\frac{5\pi}{12}+k\pi\end{matrix}\right.\)

d.

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=-\sqrt{2}< -1\left(l\right)\\sin2x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=-\frac{\pi}{4}+k2\pi\\2x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{8}+k\pi\\x=\frac{5\pi}{8}+k\pi\end{matrix}\right.\)

NV
16 tháng 9 2020

a.

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\cosx=\frac{5}{\sqrt{3}}>1\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

b.

\(\Leftrightarrow\frac{1}{2}sin4x.cos4x+\frac{1}{8}=0\)

\(\Leftrightarrow\frac{1}{4}sin8x+\frac{1}{8}=0\)

\(\Leftrightarrow sin8x=-\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}8x=-\frac{\pi}{6}+k2\pi\\8x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{48}+\frac{k\pi}{4}\\x=\frac{7\pi}{48}+\frac{k\pi}{4}\end{matrix}\right.\)

NV
17 tháng 9 2020

c.

\(\Leftrightarrow tanx=-\frac{1}{\sqrt{3}}\)

\(\Leftrightarrow x=-\frac{\pi}{6}+k\pi\)

d.

\(\Leftrightarrow\frac{1}{2}sin2x.cos2x=0\)

\(\Leftrightarrow\frac{1}{4}sin4x=0\)

\(\Leftrightarrow sin4x=0\)

\(\Leftrightarrow x=\frac{k\pi}{4}\)

e.

\(\Leftrightarrow4sin4x.cos4x=-\sqrt{2}\)

\(\Leftrightarrow2sin8x=-\sqrt{2}\)

\(\Leftrightarrow sin8x=-\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}8x=-\frac{\pi}{4}+k2\pi\\8x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{32}+\frac{k\pi}{4}\\x=\frac{5\pi}{32}+\frac{k\pi}{4}\end{matrix}\right.\)

NV
17 tháng 9 2020

a.

\(\Leftrightarrow sin2x=cosx\)

\(\Leftrightarrow sin2x=sin\left(\frac{\pi}{2}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}-x+k2\pi\\2x=\frac{\pi}{2}+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

b.

\(\Leftrightarrow\left[{}\begin{matrix}cos\frac{x}{2}=\frac{1}{2}\\sin\frac{x}{2}=-2< -1\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{x}{2}=\frac{\pi}{3}+k2\pi\\\frac{x}{2}=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k4\pi\\x=-\frac{2\pi}{3}+k4\pi\end{matrix}\right.\)

NV
29 tháng 10 2020

1d.

Đề ko rõ

1e.

\(\Leftrightarrow\left(4cos^3x-3cosx\right)^2.cos2x-cos^2x=0\)

\(\Leftrightarrow cos^2x\left(4cos^2x-3\right)^2.cos2x-cos^2x=0\)

\(\Leftrightarrow cos^2x\left(2cos2x-1\right)^2cos2x-cos^2x=0\)

\(\Leftrightarrow cos^2x\left[\left(2cos2x-1\right)^2.cos2x-1\right]=0\)

\(\Leftrightarrow cos^2x\left(4cos^32x-4cos^22x+cos2x-1\right)=0\)

\(\Leftrightarrow cos^2x\left(cos2x-1\right)\left(4cos^22x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos2x=1\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
29 tháng 10 2020

2b.

Đề thiếu

2c.

Nhận thấy \(cos2x=0\) ko phải nghiệm, chia 2 vế cho \(cos^32x\)

\(\frac{8sin^22x}{cos^22x}=\frac{\sqrt{3}sin2x}{cos2x}.\frac{1}{cos^22x}+\frac{1}{cos^22x}\)

\(\Leftrightarrow8tan^22x=\sqrt{3}tan2x\left(1+tan^22x\right)+1+tan^22x\)

\(\Leftrightarrow\sqrt{3}tan^32x-7tan^22x+\sqrt{3}tan2x+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1}{\sqrt{3}}\\tanx=\sqrt{3}-2\\tanx=\sqrt{3}+2\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
6 tháng 10 2020

a.

\(\Leftrightarrow sin2x+cos2x=3sinx+cosx+2\)

\(\Leftrightarrow2sinx.cosx-3sinx+2cos^2x-cosx-3=0=0\)

\(\Leftrightarrow sinx\left(2cosx-3\right)+\left(cosx+1\right)\left(2cosx-3\right)=0\)

\(\Leftrightarrow\left(sinx+cosx+1\right)\left(2cosx-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=-1\\2cosx-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\\cosx=\frac{3}{2}\left(vn\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
6 tháng 10 2020

b.

\(\Leftrightarrow1+sinx+cosx+2sinx.cosx+2cos^2x-1=0\)

\(\Leftrightarrow sinx\left(2cosx+1\right)+cosx\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(2cosx+1\right)=0\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

NV
31 tháng 7 2020

c/

\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}-\frac{\pi}{4}\right)=1\)

\(\Leftrightarrow sinx=\frac{\sqrt{2}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k2\pi\\x=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

d/

\(\Leftrightarrow sin2x-2cos2x-5=2sin2x-cos2x-6\)

\(\Leftrightarrow sin2x+cos2x=1\)

\(\Leftrightarrow\sqrt{2}sin\left(2x+\frac{\pi}{4}\right)=1\)

\(\Leftrightarrow sin\left(2x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}2x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\2x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\)

NV
31 tháng 7 2020

a/ ĐKXĐ:...

\(\Leftrightarrow\frac{sinx}{cosx}-\frac{\sqrt{2}}{cosx}=1\)

\(\Leftrightarrow sinx-\sqrt{2}=cosx\)

\(\Leftrightarrow sinx-cosx=\sqrt{2}\)

\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=\sqrt{2}\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=1\)

\(\Leftrightarrow x-\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{3\pi}{4}+k2\pi\)

b/

ĐKXĐ: ...

\(\Leftrightarrow\left(2sinx-1\right)\left(sin4x-1\right)+cos4x\left(2sinx-1\right)=0\)

\(\Leftrightarrow2sinx.sin4x-2sinx-sin4x+1+2sinx.cos4x-cos4x=0\)

\(\Leftrightarrow2sinx\left(sin4x+cos4x\right)-\left(sin4x+cos4x\right)-\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left(2sinx-1\right)\left(sin4x+cos4x\right)-\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left(2sinx-1\right)\left(sin4x+cos4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sin4x+cos4x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sin\left(4x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\4x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\4x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=\frac{k\pi}{2}\\x=\frac{\pi}{8}+\frac{k\pi}{2}\left(l\right)\end{matrix}\right.\)

NV
27 tháng 8 2020

e/

\(\Leftrightarrow\left(sin^2x+4sinx.cosx+3cos^2x\right)-\left(sinx+3cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(sinx+3cosx\right)-\left(sinx+3cosx\right)=0\)

\(\Leftrightarrow\left(sinx+3cosx\right)\left(sinx+cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+3cosx=0\\sinx+cosx-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-3cosx\\\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-3\\sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(-3\right)+k\pi\\x=k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

NV
27 tháng 8 2020

d/

\(\Leftrightarrow2sinx+2sinx.cos2x-\left(1-sin2x\right)-2cosx=0\)

\(\Leftrightarrow2\left(sinx-cosx\right)+2sinx\left(cos^2x-sin^2x\right)-\left(sinx-cosx\right)^2=0\)

\(\Leftrightarrow2\left(sinx-cosx\right)-2sinx\left(sinx-cosx\right)\left(sinx+cosx\right)-\left(sinx-cosx\right)^2=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(2-2sin^2x-2sinx.cosx-sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left[2cos^2x-2sinx.cosx-sinx+cosx\right]=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left[2cosx\left(cosx-sinx\right)+cosx-sinx\right]=0\)

\(\Leftrightarrow-\left(sinx-cosx\right)^2\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\2cosx+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

NV
31 tháng 1 2021

ĐKXĐ: \(sinx\ne\dfrac{\sqrt{2}}{2}\)

\(\left(sinx-cosx\right)\left(sin2x-3\right)+\left(sinx-cosx\right)^2+\left(sin^2x-cos^2x\right)=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(sin2x-3\right)+\left(sinx-cosx\right)^2+\left(sinx-cosx\right)\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(sin2x-3+2sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\\left(sin2x-1\right)+2\left(sinx+1\right)=0\left(vô-nghiệm\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\)

Kết hợp ĐKXĐ \(\Rightarrow x=-\dfrac{\pi}{4}+k2\pi\)

NV
31 tháng 7 2020

e/

ĐKXĐ: ...

\(\Leftrightarrow\frac{2sin4x.cos2x}{cos2x}-2cos4x=2\sqrt{2}\)

\(\Leftrightarrow2sin4x-2cos4x=2\sqrt{2}\)

\(\Leftrightarrow sin4x-cos4x=\sqrt{2}\)

\(\Leftrightarrow\sqrt{2}sin\left(4x-\frac{\pi}{4}\right)=\sqrt{2}\)

\(\Leftrightarrow sin\left(4x-\frac{\pi}{4}\right)=1\)

\(\Leftrightarrow4x-\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=\frac{3\pi}{16}+\frac{k\pi}{2}\)

NV
31 tháng 7 2020

d/

Đặt \(sin2x-cos2x=\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=t\Rightarrow\left|t\right|\le\sqrt{2}\)

\(\Rightarrow t^2-3t-4=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=-1\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\2x-\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{3\pi}{4}+k\pi\end{matrix}\right.\)