K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x-1-\frac{x-1}{3}\le\frac{2x+3}{2}+\frac{x}{3}-1\)

\(\Leftrightarrow x+\frac{1}{3}\le\frac{2x+3}{2}\) \(\Leftrightarrow\frac{1}{3}\le\frac{2x+3}{2}-\frac{2x}{2}\) \(\Leftrightarrow\frac{1}{3}\le\frac{3}{2}\) (luôn đúng)

Vậy bất phương trình có vô số nghiệm

8 tháng 5 2017

Cái bài đầu giải BPT bn ghi cái dj ak ,mik cx k hỉu nữa

V mik giải bài 2 nghen, sửa lại đề bài đầu rồi mik giải cho

\(3x-3=|2x+1|\)

Điều kiện: \(3x-3\ge0\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=3x-3\\2x+1=-3x+3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1-3\\2x+3x=-1+3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-x=-3\\5x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\left(n\right)\\x=\frac{2}{5}\left(l\right)\end{cases}}}\)

Vậy S={3}

Cài đề câu b ,bn xem lại nhé!

8 tháng 5 2017

\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}>\frac{x^2}{7}-\frac{2x-3}{5}\)

\(\Leftrightarrow\frac{2x-3}{35}+\frac{5x\left(x-2\right)}{35}-\frac{5x^2}{35}+\frac{7\left(2x-3\right)}{35}>0\)

\(\Leftrightarrow2x-3+5x\left(x-2\right)-5x^2+7\left(2x-3\right)>0\)

\(\Leftrightarrow2x-3+5x^2-10x-5x^2+14x-21>0\)

\(\Leftrightarrow6x-24>0\)

\(\Leftrightarrow x>4\)

VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG TRÌNH LÀ :  S = {  \(x\text{\x}>4\)}

\(\frac{6x+1}{18}+\frac{x+3}{12}\le\frac{5x+3}{6}+\frac{12-5x}{9}\)

\(\Leftrightarrow\frac{6\left(6x+1\right)}{108}+\frac{9\left(x+3\right)}{108}\le\frac{18\left(5x+3\right)}{108}+\frac{12\left(12-5x\right)}{108}\)

\(\Leftrightarrow36x+6+9x+27\le90x+54+144-60x\)

\(\Leftrightarrow36x+6+9x+27-90x-54-144+60x\le0\)

\(\Leftrightarrow15x-165\le0\)

\(\Leftrightarrow x\le11\)

VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG trình ..........

tk mk nka !!! chúc bạn học tốt !!!

16 tháng 4 2019

\(b,\frac{x+5}{6}+\frac{x-1}{3}\le\frac{x+3}{2}-1.\)

\(\Rightarrow\frac{x+5}{6}+\frac{2\left(x-1\right)}{6}\le\frac{x+3}{2}-1\)

\(\Rightarrow\frac{x+5}{6}+\frac{2x-2}{6}\le\frac{x+3}{2}-1\)

\(\Rightarrow\frac{x+5+2x-2}{6}\le\frac{x+3}{2}-1\)

\(\Rightarrow\frac{3x+3}{6}\le\frac{3\left(x+3\right)}{6}-\frac{6}{6}\)

\(\Rightarrow\frac{3x+3}{6}\le\frac{3x+9}{6}-\frac{6}{6}\)

\(\Rightarrow\frac{3x+3}{6}\le\frac{3x+9-6}{6}\)

\(\Rightarrow\frac{3x+3}{6}\le\frac{3x+3}{6}\)

\(\Rightarrow3x+3\le3x+3\)

\(\Rightarrow S=\varnothing\)

29 tháng 7 2019

Mình giải thử thôi nha

\(\frac{\left(2x-1\right)^2}{2}-\frac{\left(1-3x\right)^2}{3}\le x\left(2-x\right)\)

\(\Leftrightarrow3\left(2x-1\right)^2-2\left(1-3x\right)^2\le6x\left(2-x\right)\)

\(\Leftrightarrow12x^2-12x+3-2+12x-18x^2\le12x-6x^2\)

\(\Leftrightarrow-6x^2+1\le12x-6x^2\)

\(\Leftrightarrow1\le12x\)

\(\Leftrightarrow\frac{1}{12}\le x\)

\(\Rightarrow x\ge\frac{1}{12}\)

26 tháng 3 2020

giúp mik vs

26 tháng 3 2020

a) \(\frac{3-2x}{5}>\frac{2-x}{3}\)

<=> \(\frac{3\left(3-2x\right)}{15}>\frac{5\left(2-x\right)}{15}\)

<=> \(9-6x>10-5x\)

<=> 9 - 10 > -5x + 6x

<=> x < -1

Vậy nghiệm của bất phương trình là x < -1

b) \(\frac{x-1}{6}-\frac{x-1}{3}\le\frac{x}{2}\)

<=> \(\frac{x-1-2\left(x-1\right)}{6}\le\frac{3x}{6}\)

<=> \(x-1-2x+2\le3x\)

<=> \(-x+1\le3x\)

<=> \(1\le2x\)

<=> x \(\ge\frac{1}{2}\)

Vậy nghiệm của bất phương trình là x > = 1/2

c) \(\frac{x+1}{3}>\frac{2x-1}{6}-2\)

<=> \(\frac{2\left(x+1\right)}{6}>\frac{2x-1-12}{6}\)

<=> 2x + 1 > 2x - 13

<=> 1 > -13 (luôn đúng)

Vậy nghiệm của bất phương trình luôn đúng với mọi x 

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

\(a,3^x>\dfrac{1}{243}\\ \Leftrightarrow3^x>3^{-5}\\ \Leftrightarrow x>-5\\ b,\left(\dfrac{2}{3}\right)^{3x-7}\le\dfrac{3}{2}\\ \Leftrightarrow3x-7\le1\\ \Leftrightarrow3x\le8\\ \Leftrightarrow x\le\dfrac{8}{3}\\ c,4^{x+3}\ge32^x\\ \Leftrightarrow2^{2x+6}\ge2^{5x}\\ \Leftrightarrow2x+6\ge5x\\ \Leftrightarrow3x\le6\\ \Leftrightarrow x\le2\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

d, Điều kiện: x > 1

\(log\left(x-1\right)< 0\\ \Leftrightarrow x-1< 1\\ \Leftrightarrow1< x< 2\)

e, Điều kiện: \(x>\dfrac{1}{2}\)

\(log_{\dfrac{1}{5}}\left(2x-1\right)\ge log_{\dfrac{1}{5}}\left(x+3\right)\\ \Leftrightarrow2x-1\ge x+3\\ \Leftrightarrow x\ge4\)

f, Điều kiện: x > 4

\(ln\left(x+3\right)\ge ln\left(2x-8\right)\\ \Leftrightarrow x+3\ge2x-8\\\Leftrightarrow4< x\le11\)

6 tháng 3 2020

\(\Leftrightarrow x-1-\frac{x-1}{3}-\frac{2x+3}{2}-\frac{x}{3}+1\le0\)

\(\Leftrightarrow x-\frac{x-1}{3}-\frac{2x+3}{2}-\frac{x}{3}\le0\)

\(\Leftrightarrow\frac{6x}{6}-\frac{2x-2}{6}-\frac{6x+9}{6}-\frac{2x}{6}\le0\)

\(\Leftrightarrow6x-2x+2-6x-9-2x\le0\)

\(\Leftrightarrow-4x-7\le0\Leftrightarrow4x+7\ge0\Leftrightarrow x\ge-\frac{7}{4}\)