Giải pt nghiệm nguyên: \(5x^2+y^2=17+xy\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x^2+y^2=17+2xy\)
\(\Leftrightarrow4x^2+\left(x-y\right)^2=17\)
Từ đây ta nhận xét rằng 17 tách thành tổng 2 số chính phương trong đó có 1 số chia hết cho 4. Từ đó ta có
[4x2, (x - y)2] = (16, 1)
Tới đây thì đơn giản rồi bạn tự làm tiếp nhé
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
\(\Leftrightarrow\left(2x\right)^2+\left(x-y\right)^2=17\)
\(\Rightarrow\left(2x\right)^2\le17
\)
\(\Leftrightarrow4x^2\le16\)
\(\Leftrightarrow x^2\le4\)
\(x\in\left\{-2;-1;0;1;2\right\}\)
kẻ bảng thay từng giá trị vào
PT \(\Leftrightarrow\left(y-5\right)x^2-\left(y-1\right)x+y-1=0\)
Với y=5 thì ta không tìm được x thỏa mãn
Với \(y\ne5\), ta có
\(\Delta=-3y^2+26-19\)
Để phương trình có nghiệm thì \(\Delta\ge0\Rightarrow1\le x\le7\)
Từ đó ta thế các giá trị của y vào phương trình tìm x (Bạn tự giải)
\(pt< =>\left(x-y\right)^2+xy=\left(x-y\right)\left(xy+2\right)+9\)
\(< =>\left(y-x\right)\left(xy+2+y-x\right)+xy+2+y-x-\left(y-x\right)=11\)
\(< =>\left(y-x+1\right)\left(xy+2+y-x\right)-\left(y-x+1\right)=10\)
\(< =>\left(x-y+1\right)\left(x-y-1-xy\right)=10\)
đến đây giải hơi bị khổ =))
\(x^3+y^3=5+x^2y+xy^2\Rightarrow x^3+y^3-\left(x^2y+xy^2\right)=5\)
\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)=5\)
\(\Rightarrow\left(x+y\right)\left(x-y\right)^2=5\)
Vì \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\5>0\end{matrix}\right.\Rightarrow x+y>0\)
Lại có \(\left\{{}\begin{matrix}\left(x-y\right)^2\in N\\\left(x-y\right)^2< 5\end{matrix}\right.\) và \(\left(x-y\right)^2\) là số chính phương
\(\Rightarrow\left(x-y\right)^2=1\Rightarrow\left\{{}\begin{matrix}x+y=5\\x-y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
\(5x^2+y^2=17+xy\)
<=> \(20x^2+4y^2-4xy=68\)
<=> \(\left(x^2-4xy+4y^2\right)+19x^2=68\)
<=> \(\left(x-2y\right)^2=68-19x^2\) (1)
Do \(VT=\left(x-2y\right)^2\ge0\)=> \(68-19x^2\ge0\)=> \(19x^2\le68\)
=> \(x^2\le\frac{68}{19}\)
Do x nguyên và x2 là số chính phương => x2 \(\in\){0; 1}
<=> x \(\in\){0; 1; -1}
(tự Thay x vào pt (1) để tìm y)