\(\frac{2009^{2008}-1}{2009^{2009}-1}< \frac{2009^{2007}+1}{2009^{2008}+1}\)
giúp mk nhA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời
Vế trái 0 không nhỏ hơn vế phải 0,câu cho sai
CM đúng sai đúng không ?
Đặt \(A=\frac{2009^{2008}-1}{2009^{2009}-1}\)
\(\Rightarrow2009A=\frac{2009.\left(2009^{2008}-1\right)}{2009^{2009}-1}=\frac{2009^{2009}-2009}{2009^{2009}-1}\)
\(=\frac{2009^{2009}-1-2008}{2009^{2009}-1}=1-\frac{2008}{2009^{2009}-1}\)
Đặt \(B=\frac{2009^{2007}+1}{2009^{2008}+1}\)
\(\Rightarrow2009B=\frac{2009.\left(2009^{2007}+1\right)}{2009^{2008}+1}=\frac{2009^{2008}+2009}{2009^{2008}+1}\)
\(=\frac{2009^{2008}+1+2008}{2009^{2008}+1}=1+\frac{2008}{2009^{2008}+1}\)
Vì : \(\frac{2008}{2009^{2009}-1}< \frac{2008}{2009^{2008}+1}\)
\(\Rightarrow A=1-\frac{2008}{2009^{2009}-1}< B=1+\frac{2008}{2009^{2008}+1}\)
Vậy \(\frac{2009^{2008}-1}{2009^{2009}-1}< \frac{2009^{2007}+1}{2009^{2008}+1}\)
thế bài này bạn hỏi hay là tớ hỏi vậy
cậu chẳng ghi đề bài thì ai làm
=2008/2009-2009/2008+1/2009+2007/2008
=(2008/2009+1/2009)-(2009/2008-2007/2008)
=1-1/1004
=1003/1004
\(\frac{2008}{2009}-\frac{2009}{2008}+\frac{1}{2009}+\frac{2007}{2008}\)
=\(\left(\frac{2008}{2009}+\frac{1}{2009}\right)-\left(\frac{2009}{2008}-\frac{2007}{2008}\right)\)
=\(1-\frac{2}{2008}\)
=\(1-\frac{1}{1004}\)
=\(\frac{1003}{1004}\)
Chúc bn làm tốt nha!!!
\(C=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{\frac{5}{2008}-\frac{5}{2009}-\frac{5}{2010}}+\frac{\frac{2}{2007}-\frac{2}{2008}-\frac{2}{2009}}{\frac{3}{2007}-\frac{3}{2008}-\frac{3}{2009}}\)
\(=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{5.\left(\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)}+\frac{2.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}{3.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}\)
\(=\frac{1}{5}+\frac{2}{3}\)
\(=\frac{13}{15}\)
\(=\left(\frac{2007}{2008}+\frac{1}{2008}\right)+\left(\frac{2007}{2008}.\frac{2008}{2009}+\frac{1}{2009}\right)\)
\(=1+\frac{2008}{2009}=\frac{4017}{2009}\)
\(\frac{2007}{2008}+\frac{1}{2009}+\frac{2007}{2008}:\frac{2009}{2008}+\frac{1}{2008}\)
\(=\frac{2007}{2008}+\frac{1}{2009}+\frac{2007}{2009}+\frac{1}{2008}\)
\(=\left(\frac{2007}{2008}+\frac{1}{2008}\right)+\left(\frac{2007}{2009}+\frac{1}{2009}\right)\)
\(=1+\frac{2008}{2009}\)
\(=\frac{4017}{2009}\)
\(\frac{2009^{2008}-1}{2009^{2009}-1}< \frac{2009^{2007}+1}{2009^{2008}+1}\)
Xét hiệu:
\(\frac{2009^{2007}+1}{2009^{2008}+1}-\frac{2009^{2008}-1}{2009^{2009}-1}\)
\(=\frac{\left(2009^{2007}+1\right)\cdot\left(2009^{2009}-1\right)-\left(2009^{2008}+1\right)\cdot\left(2009^{2008}-1\right)}{\left(2009^{2008}+1\right)\cdot\left(2009^{2009}-1\right)}\)
\(=\frac{\left(2009^{2016}+2009^{2009}-2009^{2007}-1\right)-\left(2009^{2016}-1\right)}{\left(2009^{2008}+1\right)\cdot\left(2009^{2009}-1\right)}\)
\(=\frac{2009^{2009}-2009^{2007}}{\left(2009^{2008}+1\right)\cdot\left(2009^{2009}-1\right)}>0\)
\(\Rightarrow\frac{2009^{2008}-1}{2009^{2009}-1}< \frac{2009^{2007}+1}{2009^{2008}+1}\left(đpcm\right)\)