Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời
Vế trái 0 không nhỏ hơn vế phải 0,câu cho sai
CM đúng sai đúng không ?
Đặt \(A=\frac{2009^{2008}-1}{2009^{2009}-1}\)
\(\Rightarrow2009A=\frac{2009.\left(2009^{2008}-1\right)}{2009^{2009}-1}=\frac{2009^{2009}-2009}{2009^{2009}-1}\)
\(=\frac{2009^{2009}-1-2008}{2009^{2009}-1}=1-\frac{2008}{2009^{2009}-1}\)
Đặt \(B=\frac{2009^{2007}+1}{2009^{2008}+1}\)
\(\Rightarrow2009B=\frac{2009.\left(2009^{2007}+1\right)}{2009^{2008}+1}=\frac{2009^{2008}+2009}{2009^{2008}+1}\)
\(=\frac{2009^{2008}+1+2008}{2009^{2008}+1}=1+\frac{2008}{2009^{2008}+1}\)
Vì : \(\frac{2008}{2009^{2009}-1}< \frac{2008}{2009^{2008}+1}\)
\(\Rightarrow A=1-\frac{2008}{2009^{2009}-1}< B=1+\frac{2008}{2009^{2008}+1}\)
Vậy \(\frac{2009^{2008}-1}{2009^{2009}-1}< \frac{2009^{2007}+1}{2009^{2008}+1}\)
thế bài này bạn hỏi hay là tớ hỏi vậy
cậu chẳng ghi đề bài thì ai làm
\(=\left(\frac{2007}{2008}+\frac{1}{2008}\right)+\left(\frac{2007}{2008}.\frac{2008}{2009}+\frac{1}{2009}\right)\)
\(=1+\frac{2008}{2009}=\frac{4017}{2009}\)
\(\frac{2007}{2008}+\frac{1}{2009}+\frac{2007}{2008}:\frac{2009}{2008}+\frac{1}{2008}\)
\(=\frac{2007}{2008}+\frac{1}{2009}+\frac{2007}{2009}+\frac{1}{2008}\)
\(=\left(\frac{2007}{2008}+\frac{1}{2008}\right)+\left(\frac{2007}{2009}+\frac{1}{2009}\right)\)
\(=1+\frac{2008}{2009}\)
\(=\frac{4017}{2009}\)
a-b+c+d=\(\frac{2008}{2009}-\frac{2009}{2008}+\frac{1}{2009}+\frac{2007}{2008}=\left(\frac{2008}{2009}+\frac{1}{2009}\right)-\left(\frac{2009}{2008}-\frac{2007}{2008}\right)=1-\frac{2}{2008}=\frac{2006}{2008}=\frac{1003}{1004}\)
\(a-b+c+d=\frac{2008}{2009}-\frac{2009}{2008}+\frac{1}{2009}+\frac{2007}{2008}\)
\(=\left(\frac{2008}{2009}+\frac{1}{2009}\right)+\left(\frac{2007}{2008}-\frac{2009}{2008}\right)=\frac{2009}{2009}+\frac{-2}{2008}\)
\(=1+\frac{-1}{1004}=\frac{1004}{1004}+\frac{-1}{1004}=\frac{1003}{1004}\)
a) Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\) ; \(\frac{1}{3^2}< \frac{1}{2.3}\) ; \(\frac{1}{4^2}< \frac{1}{3.4}\) ; ... ; \(\frac{1}{2010^2}< \frac{1}{2009.2010}\)
=> \(Vt< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(=1-\frac{1}{2010}< 1\)
Ta có:
\(\frac{2009^{2008+1}}{2009^{2009+1}}=\frac{2009^{2009}}{2009^{2010}}=\frac{1}{2009}\)
\(\frac{2009^{2008+5}}{2009^{2009+9}}=\frac{2009^{2013}}{2009^{2018}}=\frac{1}{2009^5}\)
=>Đẳng thức trên lớn hơn đẳng thức dứi(vì 2009<2009^5)
Vậy.......
\(\frac{2009^{2008}-1}{2009^{2009}-1}< \frac{2009^{2007}+1}{2009^{2008}+1}\)
Xét hiệu:
\(\frac{2009^{2007}+1}{2009^{2008}+1}-\frac{2009^{2008}-1}{2009^{2009}-1}\)
\(=\frac{\left(2009^{2007}+1\right)\cdot\left(2009^{2009}-1\right)-\left(2009^{2008}+1\right)\cdot\left(2009^{2008}-1\right)}{\left(2009^{2008}+1\right)\cdot\left(2009^{2009}-1\right)}\)
\(=\frac{\left(2009^{2016}+2009^{2009}-2009^{2007}-1\right)-\left(2009^{2016}-1\right)}{\left(2009^{2008}+1\right)\cdot\left(2009^{2009}-1\right)}\)
\(=\frac{2009^{2009}-2009^{2007}}{\left(2009^{2008}+1\right)\cdot\left(2009^{2009}-1\right)}>0\)
\(\Rightarrow\frac{2009^{2008}-1}{2009^{2009}-1}< \frac{2009^{2007}+1}{2009^{2008}+1}\left(đpcm\right)\)