K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2020

a) \(A=\sqrt{19+8\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)

\(A=\sqrt{16+8\sqrt{3}+3}-\sqrt{3+2\sqrt{3}+1}\)

\(A=\sqrt{\left(4+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(A=4+\sqrt{3}-\sqrt{3}-1=3\)

b) \(B=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)

\(B=\sqrt{25+10\sqrt{2}+2}-\sqrt{16+8\sqrt{2}+2}\)

\(A=\sqrt{\left(5+\sqrt{2}\right)^2}-\sqrt{\left(4+\sqrt{2}\right)^2}\)

\(A=5+\sqrt{2}-4-\sqrt{2}=1\)

29 tháng 8 2020

\(A=\sqrt{19+8\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{3+8\sqrt{3}+16}-\sqrt{3+2\sqrt{3}+1}\)

\(=\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot4+4^2}-\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}+1^2}\)

\(=\sqrt{\left(\sqrt{3}+4\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\left|\sqrt{3}+4\right|-\left|\sqrt{3}+1\right|\)

\(=\sqrt{3}+4-\left(\sqrt{3}+1\right)\)

\(=\sqrt{3}+4-\sqrt{3}-1=3\)

\(B=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)

\(=\sqrt{2+10\sqrt{2}+25}-\sqrt{2+8\sqrt{2}+16}\)

\(=\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot5+5^2}-\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot4+4^2}\)

\(=\sqrt{\left(\sqrt{2}+5\right)^2}-\sqrt{\left(\sqrt{2}+4\right)^2}\)

\(=\left|\sqrt{2}+5\right|-\left|\sqrt{2}+4\right|\)

\(=\sqrt{2}+5-\left(\sqrt{2}+4\right)\)

\(=\sqrt{2}+5-\sqrt{2}-4=1\)

a) Ta có: \(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)

\(=\dfrac{-2\left(\sqrt{3}-\sqrt{8}\right)}{\sqrt{6}\left(\sqrt{3}-\sqrt{6}\right)}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}\)

\(=\dfrac{-3}{\sqrt{6}}=\dfrac{-3\sqrt{6}}{6}=\dfrac{-\sqrt{6}}{2}\)

b) Ta có: \(\left(1+\sqrt{2}+\sqrt{3}\right)\left(1-\sqrt{2}-\sqrt{3}\right)\)

\(=1-\left(\sqrt{2}+\sqrt{3}\right)^2\)

\(=1-5-2\sqrt{6}\)

\(=-4-2\sqrt{6}\)

a) Ta có: \(-3\sqrt{16}\cdot\sqrt{90}\)

\(=-3\cdot4\cdot3\sqrt{10}\)

\(=-36\sqrt{10}\)

b) Ta có: \(3\sqrt{\dfrac{4}{3}}-3\sqrt{48}+5\sqrt{75}\)

\(=3\cdot\dfrac{2}{\sqrt{3}}-3\cdot4\sqrt{3}+5\cdot5\sqrt{3}\)

\(=2\sqrt{3}-12\sqrt{3}+25\sqrt{3}\)

\(=15\sqrt{3}\)

c) Ta có: \(4\sqrt[3]{27}-\sqrt[3]{64}-2\sqrt[3]{8}\)

\(=4\cdot3-4-2\cdot2\)

\(=12-4-4=4\)

a: \(5\sqrt{2}-8\sqrt{3}+30\sqrt{3}-6\sqrt{3}=5\sqrt{2}+16\sqrt{3}\)

b: \(=14\sqrt{3}-\dfrac{3}{32}\cdot8\sqrt{3}+\dfrac{4}{18}\cdot9\sqrt{3}-\dfrac{1}{10}\cdot10\sqrt{3}\)

\(=14\sqrt{3}-\dfrac{3}{4}\sqrt{3}+2\sqrt{3}-1\sqrt{3}=\dfrac{57}{4}\sqrt{3}\)

c: \(=\dfrac{-1}{2}\cdot6\sqrt{3}+\dfrac{1}{15}\cdot5\sqrt{3}-\dfrac{1}{22}\cdot11\sqrt{3}+2\sqrt{3}\)

\(=-3\sqrt{3}+\dfrac{1}{3}\sqrt{3}-\dfrac{1}{2}\sqrt{3}+2\sqrt{3}=-\dfrac{7}{6}\sqrt{3}\)

d: \(=\dfrac{5}{8}\cdot4\sqrt{3}-\dfrac{1}{33}\cdot11\sqrt{3}+\dfrac{3}{14}\cdot7\sqrt{3}-\dfrac{1}{4}\cdot8\sqrt{3}\)

\(=\dfrac{5}{2}\sqrt{3}-\dfrac{1}{3}\sqrt{3}+\dfrac{3}{2}\sqrt{3}-2\sqrt{3}=\dfrac{5}{3}\sqrt{3}\)

21 tháng 6 2023

\(E=2\sqrt{3}+3\sqrt{3^3}-\sqrt{100.3}\\ =2\sqrt{3}+9\sqrt{3}-10\sqrt{3}\\ =\left(2+9-10\right)\sqrt{3}=\sqrt{3}\)

\(F=\sqrt{3^2.2}+4\sqrt{18}=\sqrt{18}+4\sqrt{18}=\left(1+4\right)\sqrt{18}=5\sqrt{18}\)

\(G=2\sqrt{3}-4\sqrt{3^3}+5\sqrt{4^2.3}=2\sqrt{3}-12\sqrt{3}+20\sqrt{3}=\left(2-12+20\right)\sqrt{3}=10\sqrt{3}\)

\(H=\left(3\sqrt{25.2}-5\sqrt{9.2}+3\sqrt{2^3}\right)\sqrt{2}\\ =\left(15\sqrt{2}-15\sqrt{2}+6\sqrt{2}\right)\sqrt{2}\\ =6\sqrt{2}.\sqrt{2}=6\)

k: \(\sqrt[3]{\left(4-2\sqrt{3}\right)\left(\sqrt{3}-1\right)}\)

\(=\sqrt[3]{\left(\sqrt{3}-1\right)^3}\)

\(=\sqrt{3}-1\)

27 tháng 10 2023

A: \(A=\sqrt{9}-3\sqrt{\dfrac{50}{9}}+3\sqrt{8}-\sqrt[3]{27}\)

\(=3-3\cdot\dfrac{5\sqrt{2}}{3}+6\sqrt{2}-3\)

\(=-5\sqrt{2}+6\sqrt{2}=\sqrt{2}\)

b: \(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\dfrac{2}{\sqrt{3}-1}-6\cdot\sqrt{\dfrac{16}{3}}\)

\(=\left|2-\sqrt{3}\right|+\dfrac{2\left(\sqrt{3}+1\right)}{3-1}-6\cdot\dfrac{4}{\sqrt{3}}\)

\(=2-\sqrt{3}+\sqrt{3}+1-4\sqrt{3}\)

\(=3-4\sqrt{3}\)

27 tháng 10 2023

\(A=\sqrt{9}-3\sqrt{\dfrac{50}{9}}+3\sqrt{8}-\sqrt[3]{27}\\ =3-3\cdot\dfrac{1}{3}\sqrt{25\cdot2}+3\sqrt{4\cdot2}-3\\ =3-1\cdot5\sqrt{2}+3\cdot2\sqrt{2}-3\\ =3-5\sqrt{2}+6\sqrt{2}-3\\ =\sqrt{2}\)

\(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\dfrac{2}{\sqrt{3}-1}-6\sqrt{\dfrac{16}{3}}\\ =\left|2-\sqrt{3}\right|+\dfrac{2\left(\sqrt{3}+1\right)}{3-1}-6\cdot\dfrac{4\sqrt{3}}{3}\\ =2-\sqrt{3}+\sqrt{3}+1-8\sqrt{3}\\ =3-8\sqrt{3}\)

14 tháng 8 2023

\(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)

\(=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\sqrt{3}+2\sqrt{7}}\)

\(=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}\)

\(=\dfrac{\sqrt{2}}{2}\)

___________

\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{6}+\sqrt{8}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

__________

\(\dfrac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)

\(=\dfrac{3\cdot2\sqrt{2}-2\cdot2\sqrt{3}+2\sqrt{5}}{3\cdot3\sqrt{2}-2\cdot3\sqrt{3}+3\sqrt{5}}\)

\(=\dfrac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}\)

\(=\dfrac{2\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}{3\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}\)

\(=\dfrac{2}{3}\)

a: \(=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}=\dfrac{\sqrt{2}}{2}\)

b: \(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+2\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+2}=1+\sqrt{2}\)

c: \(=\dfrac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}=\dfrac{2}{3}\)

bài 1: 

a: Ta có: \(2\sqrt{18}-9\sqrt{50}+3\sqrt{8}\)

\(=6\sqrt{2}-45\sqrt{2}+6\sqrt{2}\)

\(=-33\sqrt{2}\)

b: Ta có: \(\left(\sqrt{7}-\sqrt{3}\right)^2+7\sqrt{84}\)

\(=10-2\sqrt{21}+14\sqrt{21}\)

\(=12\sqrt{21}+10\)

Bài 2: 

a: Ta có: \(\sqrt{\left(2x+3\right)^2}=8\)

\(\Leftrightarrow\left|2x+3\right|=8\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=8\\2x+3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{11}{2}\end{matrix}\right.\)

b: Ta có: \(\sqrt{9x}-7\sqrt{x}=8-6\sqrt{x}\)

\(\Leftrightarrow4\sqrt{x}=8\)

hay x=4

c: Ta có: \(\sqrt{9x-9}+1=13\)

\(\Leftrightarrow3\sqrt{x-1}=12\)

\(\Leftrightarrow x-1=16\)

hay x=17