Cho tam giác DEF vuông tại D. Gọi A,B lần lượt là hình chiếu của H trên DE, DF.
a) chứng minh tam giác DAB đồng dạng với tam giác DEF
b) kẻ trung tuyến DM. Chứng minh EDH=MDF
c) DM cắt AB tại O. Chứng minh DM vuông góc AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔDHE vuông tại H có HA là đường cao ứng với cạnh huyền DE, ta được:
\(DA\cdot DE=DH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔDFH vuông tại H có HB là đường cao ứng với cạnh huyền DF, ta được:
\(DB\cdot DF=DH^2\)(2)
Từ (1) và (2) suy ra \(DA\cdot DE=DB\cdot DF\)
hay \(\dfrac{DE}{DB}=\dfrac{DF}{DA}\)
Xét ΔDEF vuông tại D và ΔDBA vuông tại D có
\(\dfrac{DE}{DB}=\dfrac{DF}{DA}\)(cmt)
Do đó: ΔDEF\(\sim\)ΔDBA(c-g-c)
a) xét ΔHED và ΔDEF có
\(\widehat{EHD}=\widehat{EDF}=\)90o
\(\widehat{E} chung\)
=> ΔHED ∼ ΔDEF (gg)
b) Xét ΔDEF có \(\widehat{D}=\)90o
=> DE2+DF2=EF2
=>62+82=EF2
=> EF=10 cm
SΔDEF=\(\dfrac{ED.DF}{2}=\dfrac{DH.EF}{2}\)=> ED.DF=DH.EF => 6.8=DH.10
=> DH =4,8 cm
c) Xét ΔDEH có \(\widehat{EHD}=90\)o
=> HD2.HE2=ED2
=>4.82+HE2=62
=> HE=3.6
ta lại có DI là phân giác
=> \(\dfrac{EI}{IH}=\dfrac{ED}{HD}\)
=>\(\dfrac{EI}{EH-EI}=\dfrac{6}{4.8} \)=>\(\dfrac{EI}{3.6-EI}=\dfrac{6}{4.8}\)=>EI=2
=> IH=EH-EI=3.6-2=1.6
a) Xét ΔHED vuông tại H và ΔDEF vuông tại D có
\(\widehat{HED}\) chung
Do đó: ΔHED\(\sim\)ΔDEF(g-g)
Xét `\Delta MHF` và `\Delta MKE`:
`\text {MH = MK (gt)}`
$\widehat {KME} = \widehat {HMF} (\text {đối đỉnh})$
`\text {ME = MF (trung tuyến DM)}`
`=> \Delta MHF = \Delta MKE (c-g-c).`
Xét ΔMHF và ΔMKE có
MH=MK
góc HMF=góc KME
MF=ME
=>ΔMHF=ΔMKE