rút gọn và tính giá trị biểu thức
D = \(\frac{1}{\sqrt{h+2\sqrt{h-1}}}\) + \(\frac{1}{\sqrt{h-2\sqrt{h-1}}}\) , h=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
\(D=\frac{1}{\sqrt{h+2\sqrt{h-1}}}+\frac{1}{\sqrt{h-2\sqrt{h-1}}}\)
\(=\frac{1}{\sqrt{h-1+2\sqrt{h-1}+1}}+\frac{1}{\sqrt{h-1-2\sqrt{h-1}+1}}\)
\(=\frac{1}{\sqrt{h-1}+1}+\frac{1}{\sqrt{h-1}-1}\)
\(=\frac{\sqrt{h-1}-1+\sqrt{h-1}+1}{h-1-1}\)
\(=\frac{2\sqrt{h-1}}{h-2}\)
Thay \(h=3\)vào D ta có:
\(D=\frac{2\sqrt{3-1}}{3-2}=2\sqrt{2}\)
Vậy với \(h=3\)thì \(D=2\sqrt{2}\)
2,
a, \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)(ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x=2\left(TM\right)\)
Vậy PT có nghiệm là \(x=2\)
b, \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)(ĐK: \(-\sqrt{2}\le x\le\sqrt{2}\))
\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}=-3\)
\(\Leftrightarrow0=-3\)(vô lí)
Vậy PT đã cho vô nghiệm.
Điều kiện xác định : \(0\le x\ne1\)
\(=\frac{\sqrt{x-1}+\sqrt{x}+\sqrt{x-1}-\sqrt{x}}{\left(x-1\right)-x}+\frac{x\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(=-2\sqrt{x-1}+x=\left(x-1-2\sqrt{x-1}+1\right)=\left(\sqrt{x-1}-1\right)^2\)
\(\Leftrightarrow\sqrt{x-1}-1=4\) (Vì \(\sqrt{x-1}-1\ge-1>-4\))
\(\Leftrightarrow x=26\)
\(D=\dfrac{1}{\sqrt{h+2\sqrt{h-1}}}+\dfrac{1}{\sqrt{h-2\sqrt{h-1}}}\)
\(=\dfrac{1}{\sqrt{h-1+2\sqrt{h-1}+1}}+\dfrac{1}{\sqrt{h-1-2\sqrt{h-1}+1}}\)
\(=\dfrac{1}{\sqrt{\left(\sqrt{h-1}+1\right)^2}}+\dfrac{1}{\sqrt{\left(\sqrt{h-1}-1\right)^2}}\)
\(=\dfrac{1}{\sqrt{h-1}+1}+\dfrac{1}{\sqrt{h-1}-1}\)
\(=\dfrac{\sqrt{h-1}-1+\sqrt{h-1}+1}{\left(\sqrt{h-1}+1\right)\left(\sqrt{h-1}-1\right)}\)
\(=\dfrac{2\sqrt{h-1}}{\left(\sqrt{h-1}+1\right)\left(\sqrt{h-1}-1\right)}\)
Thay \(h=3\) vào biểu thức ta được :
\(\dfrac{2\sqrt{3-1}}{\left(\sqrt{3-1}+1\right)\left(\sqrt{3-1}-1\right)}=\dfrac{2\sqrt{2}}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=\dfrac{2\sqrt{2}}{1}=2\sqrt{2}\)
Chúc bạn học tốt
\(A=\dfrac{1}{\sqrt{h+2\sqrt{h-1}}}+\dfrac{1}{\sqrt{h-2\sqrt{h-1}}}\)
\(=\dfrac{1}{\sqrt{\left(\sqrt{h-1}+1\right)^2}}+\dfrac{1}{\sqrt{\left(\sqrt{h-1}-1\right)^2}}\)
\(=\dfrac{1}{\sqrt{h-1}+1}+\dfrac{1}{\left|\sqrt{h-1}-1\right|}\)
\(D=\dfrac{1}{\sqrt{h+2\sqrt{h-1}}}+\dfrac{1}{\sqrt{h-2\sqrt{h-1}}}\)
\(=\dfrac{1}{\sqrt{h-1}+1}+\dfrac{1}{\sqrt{h-1}-1}\)
\(=\dfrac{2\cdot\sqrt{h-1}}{h}\)
a) \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\)
\(=\left[-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right]\cdot\left(\sqrt{2}-\sqrt{5}\right)\)
\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)
\(=-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)
\(=-\left(2-5\right)\)
\(=-\left(-3\right)\)
\(=3\)
b) Ta có:
\(x^2-x\sqrt{3}+1\)
\(=x^2-2\cdot\dfrac{\sqrt{3}}{2}\cdot x+\left(\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)
\(=\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)
Mà: \(\left(x-\dfrac{\sqrt{3}}{2}\right)^2\ge0\forall x\) nên
\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\forall x\)
Dấu "=" xảy ra:
\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}=\dfrac{1}{4}\)
\(\Leftrightarrow x=\dfrac{\sqrt{3}}{2}\)
Vậy: GTNN của biểu thức là \(\dfrac{1}{4}\) tại \(x=\dfrac{\sqrt{3}}{2}\)
a)
\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\\ =\left(-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =\left(-\sqrt{2}-\sqrt{5}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}^2-\sqrt{5}^2\right)\\ =-\left(2-5\right)\\ =-\left(-3\right)\\ =3\)
Bài làm:
Ta có:
\(D=\frac{1}{\sqrt{h+2\sqrt{h-1}}}+\frac{1}{\sqrt{h-2\sqrt{h-1}}}\)
\(D=\frac{1}{\sqrt{\left(h-1\right)+2\sqrt{h-1}+1}}+\frac{1}{\sqrt{\left(h-1\right)-2\sqrt{h-1}+1}}\)
\(D=\frac{1}{\sqrt{\left(\sqrt{h-1}+1\right)^2}}+\frac{1}{\sqrt{\left(\sqrt{h-1}-1\right)^2}}\)
\(D=\frac{1}{\left|\sqrt{h-1}+1\right|}+\frac{1}{\left|\sqrt{h-1}-1\right|}\)
Tại h = 3 thì giá trị của D là:
\(D=\frac{1}{\left|\sqrt{3-1}+1\right|}+\frac{1}{\left|\sqrt{3-1}-1\right|}\)
\(D=\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{2}-1}=\frac{\sqrt{2}-1+\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\frac{2\sqrt{2}}{2-1}=2\sqrt{2}\)