Cho a;b;c >0.CM:
\(\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{b+\sqrt{\left(b+c\right)\left(b+a\right)}}+\frac{c}{c+\sqrt{\left(c+a\right)\left(c+b\right)}}\le1\)
Mình đg cần gấp,giúp mình với:D
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
Hmm...
Ta đánh giá:
\(\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{a}{a+\sqrt{ab}+\sqrt{ac}}=\frac{\sqrt{a}.\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\sqrt{a}}\)
\(=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\) (Áp dụng BĐT Bunhia)
Tương tự CM được:
\(\frac{b}{b+\sqrt{\left(b+c\right)\left(b+a\right)}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\) ; \(\frac{c}{c+\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Cộng vế 3 BĐT trên lại ta được:
\(Vt\le\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)
Dấu "=" xảy ra khi: \(a=b=c\)
Ko hiểu chỗ nào ib riêng:)
Ta có \( {\displaystyle \displaystyle \sum }cyc\)\(\frac{ab}{\sqrt{\left(1-c\right)^3\left(1+c\right)}}=\Sigma_{cyc}\frac{ab}{\left(a+b\right)\sqrt{1-c^2}}\)\(=\Sigma_{cyc}\frac{ab}{\left(a+b\right)\sqrt{\left(a+b+c\right)^2-c^2}}=\Sigma_{cyc}\frac{ab}{\left(a+b\right)\sqrt{a^2+b^2+2\left(ab+bc+ca\right)}}\)
Áp dụng bất đẳng thức AM-GM có \(\hept{\begin{cases}a^2+b^2+2\left(ab+bc+ca\right)\ge2\left(ab+bc\right)+2\left(ab+ca\right)\\a+b\ge2\sqrt{ab}\end{cases}}\)
Do đó ta có \(\Sigma_{cyc}\frac{ab}{\left(a+b\right)\sqrt{a^2+b^2+2\left(ab+bc+ca\right)}}\le\frac{1}{2}\Sigma_{cyc}\sqrt{\frac{ab}{2\left(ab+bc\right)+2\left(ab+ca\right)}}\)
\(\le\frac{1}{4\sqrt{2}}\Sigma_{cyc}\sqrt{\frac{ab}{ab+bc}+\frac{ab}{ab+ca}}\le\frac{1}{4\sqrt{2}}\sqrt{3}\sqrt{\Sigma_{cyc}\left(\frac{ab}{ab+bc}+\frac{ab}{ab+ca}\right)}\)
Đẳng thức xảy ra khi a=b=c=\(\frac{1}{3}\)