Cho tam giác abc cân tại a. Đường cao AH. Trên BC lấy M. Gọi D,E thứ tự là hình chiếu của M trên AB, AC.
a) c/m: MD+ME=BH
b) Hãy phát biểu thành 1 tính chất khi M di chuyển trên cạnh đáy BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trung điểm MN chạy trên đường trung bình của tam giác abc( mấy phần kia dễ r mk ko lm)
cụ thể :
do ABMN là hình chữ nhật ( sẽ phải cm ở phần a)
=> AD và MN giao nhau tại trung điểm mỗi đường
gọi I là trung điểm MN thì I là trung điểm AD
lấy H là trung điểm AB
lấy K là trung điểm AC
HI song song BC( dễ dàng chứng minh do HI// BD _ đường trung binh)
KI song song BC(dễ dàng chứng minh do KI//DC_ đường trung bình)
=> H , I ,K thằng hàng hay I chạy trên HK
Vậy
trung điểm MN chạy trên đường trung bình HK của tam giác abc
a) Xét tứ giác ADME có
AD//ME
DM//AE
Do đó: ADME là hình bình hành
b) Xét ΔEMC có \(\widehat{EMC}=\widehat{C}\left(=\widehat{B}\right)\)
nên ΔEMC cân tại E
Suy ra: EM=EC
Ta có: AE+EC=AC(E nằm giữa A và C)
mà AE=DM(AEMD là hình bình hành
mà EM=EC(cmt)
nên AC=MD+ME
cho mình hỏi ngu tí là ở câu b đó ạ,từ đâu mà suy ra được góc EMC = C(=B) ạ :((
DMA = MAN = AND = 900
=> AMDN là hình chữ nhật
=> AD = MN
I là trung điểm của MN và AD
=> HI là đường trung tuyến của tam giác HAD vuông tại H
=> HI = AD/2
mà AD = MN (chứng minh trên)
=> HI = MN/2
mà HI là đường trung tuyến của tam giác HMN (I là trung điểm của MN)
=> Tam giác HMN vuông tại H
=> MHN = 900
Kẻ IK _I_ HD
mà AH _I_ HD
=> IK // AH
mà I là trung điểm của AD (chứng minh trên)
=> K là trung điểm của HD
=> IK là đường trung bình của tam giác DAH
=> IK = AH/2
Điểm I cách đoạn thẳng BC 1 khoảng cố định bằng 1 nửa AH không đổi
=> Điểm I di chuyển trên đường thẳng song song với BC và cách BC 1 khoảng bằng nửa AH
Chúc bạn học tốt *(^o^)*