Cho số hữu tỉ \(\frac{a}{b}\)với \(a,b\in Z;b>0\).Chứng minh rằng:
Nếu có \(\frac{a}{b}\)lớn hơn 1 thì a>b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=\frac{b-4}{3}\left(b\inℤ\right)\)
a) Để x là số hữu tỉ dương => \(\frac{b-4}{3}>0\)
Nhân 3 vào từng vế
=> b - 4 > 0
=> b > 4 và b ∈ Z
b) Để x là số hữu tỉ âm => \(\frac{b-4}{3}< 0\)
Nhân 3 vào từng vế
=> b - 4 < 0
=> b < 4 và b ∈ Z
a) \(x=\frac{b-4}{3}>0\Leftrightarrow b>4,b\inℤ\)
b) \(x=\frac{b-4}{3}< 0\Leftrightarrow b< 4,b\inℤ\)
Để so sánh \(\frac{a}{b}\)và \(\frac{a+1}{b+1}\), ta đi so sánh hai số \(a\left(b+1\right)\)và \(b\left(a+1\right)\).
Xét hiệu:
\(a\left(b+1\right)-b\left(a+1\right)=ab+a-\left(ab+b\right)=a-b\)
Ta có 3 trường hợp, với điều kiện b > 0:
Trường hợp 1: Nếu \(a-b=0\Leftrightarrow a=b\)thì:
\(a\left(b+1\right)-b\left(a+1\right)=0\Leftrightarrow a\left(b+1\right)=b\left(a+1\right)\)
\(\Leftrightarrow\frac{a\left(b+1\right)}{b\left(a+1\right)}=\frac{b\left(a+1\right)}{a\left(b+1\right)}\Leftrightarrow\frac{a}{b}=\frac{a+1}{b+1}\)
Trường hợp 2: Nếu \(a-b< 0\Leftrightarrow a< b\)thì:
\(a\left(b+1\right)-b\left(a+1\right)< 0\Leftrightarrow a\left(b+1\right)< b\left(a+1\right)\)
\(\Leftrightarrow\frac{a\left(b+1\right)}{b\left(a+1\right)}< \frac{b\left(a+1\right)}{a\left(b+1\right)}\Leftrightarrow\frac{a}{b}< \frac{a+1}{b+1}\)
Trường hợp 3: Nếu \(a-b>0\Leftrightarrow a>b\)thì:
\(a\left(b+1\right)-b\left(a+1\right)>0\Leftrightarrow a\left(b+1\right)>b\left(a+1\right)\)
\(\Leftrightarrow\frac{a\left(b+1\right)}{b\left(a+1\right)}>\frac{b\left(a+1\right)}{a\left(b+1\right)}\Leftrightarrow\frac{a}{b}>\frac{a+1}{b+1}\)
+\(\frac{a}{b}=1\Leftrightarrow a=b\Leftrightarrow\frac{a}{b}=\frac{a+2016}{b+2016}\)
+\(\frac{a}{b}>1\Leftrightarrow a>b\Leftrightarrow\frac{a}{b}-1=\frac{a-b}{b}>\frac{a-b}{b+2016}=\frac{a+2016}{b+2016}-1\)=> \(\frac{a}{b}>\frac{a+2016}{b+2016}\)
+\(\frac{a}{b}< 1\Leftrightarrow a< b\Leftrightarrow1-\frac{a}{b}=\frac{b-a}{b}>\frac{b-a}{b+2016}=1-\frac{a+2016}{b+2016}\)=>\(\frac{a}{b}< \frac{a+2016}{b+2016}\)
Nếu a/b > 1
=>a/b - b/b >0
=>(a-b)/b >0
=>a-b>0
=>a>b(đpcm)
Ta có: \(\frac{a}{b}>1\)
\(\Leftrightarrow\frac{a}{b}-1>0\)
\(\Leftrightarrow\frac{a-b}{b}>0\)
Mà theo đề bài, b > 0 => \(a-b>0\Leftrightarrow a>b\)
Vậy \(\frac{a}{b}>1\Leftrightarrow a>b\)