K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 8 2020

\(y=\left(1-cos^2x\right)^2+cos^2x-5\)

\(y=cos^4x-cos^2x-4\)

\(y=\left(cos^2x-\frac{1}{2}\right)^2-\frac{17}{4}\ge-\frac{17}{4}\)

\(y_{min}=-\frac{17}{4}\) khi \(cos^2x=\frac{1}{2}\)

\(y=cos^2x\left(cos^2x-1\right)-4=-cos^2x.sin^2x-4=-\frac{1}{4}sin^22x-4\)

Do \(-\frac{1}{4}sin^22x\le0\Rightarrow y\le-4\)

\(y_{max}=-4\) khi \(sin2x=0\)

21 tháng 5 2021

a)\(y=\sqrt{3}sinx+cosx=2\left(\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx\right)\)\(=2\left(sinx.cos\dfrac{\pi}{6}+cosx.sin\dfrac{\pi}{6}\right)\)\(=2sin\left(x+\dfrac{\pi}{6}\right)\)

Có \(-1\le sin\left(x+\dfrac{\pi}{6}\right)\le1\) \(\Leftrightarrow-2\le2sin\left(x+\dfrac{\pi}{6}\right)\le2\)

\(\Leftrightarrow-2\le y\le2\)

miny=-2 \(\Leftrightarrow sin\left(x+\dfrac{\pi}{6}\right)=-1\)  \(\Leftrightarrow x+\dfrac{\pi}{6}=-\dfrac{\pi}{2}+2k\pi\left(k\in Z\right)\) \(\Leftrightarrow x=-\dfrac{2\pi}{3}+k2\pi\left(k\in Z\right)\)

maxy=2\(\Leftrightarrow sin\left(x+\dfrac{\pi}{6}\right)=1\) \(\Leftrightarrow x+\dfrac{\pi}{6}=\dfrac{\pi}{2}+k2\pi\left(k\in Z\right)\)\(\Leftrightarrow x=\dfrac{\pi}{3}+k2\pi\left(k\in Z\right)\)

b) \(y=sin2x-cos2x=\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)\)

Có \(\sqrt{2}\ge\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)\ge-\sqrt{2}\)

\(\Leftrightarrow\sqrt{2}\ge y\ge-\sqrt{2}\)

miny=\(-\sqrt{2}\) \(\Leftrightarrow sin\left(2x-\dfrac{\pi}{4}\right)=-1\)\(\Leftrightarrow2x-\dfrac{\pi}{4}=-\dfrac{\pi}{2}+k2\pi\left(k\in Z\right)\)\(\Leftrightarrow x=-\dfrac{\pi}{8}+k\pi\left(k\in Z\right)\)

maxy=\(\sqrt{2}\Leftrightarrow sin\left(2x-\dfrac{\pi}{4}\right)=1\)\(\Leftrightarrow x=\dfrac{3\pi}{8}+k\pi\left(k\in Z\right)\)

c) \(y=3sinx+4cosx=5\left(\dfrac{3}{5}sinx+\dfrac{4}{5}cosx\right)\)

Đặt \(cosa=\dfrac{3}{5}\) và \(sina=\dfrac{4}{5}\)(vì cos2a+sin2a=1)

\(y=5\left(sinx.cosa+cosx.sina\right)\)\(=5sin\left(x+a\right)\)

\(\Rightarrow-5\le y\le5\)

miny=-5 <=> \(sin\left(x+a\right)=-1\)\(\Leftrightarrow x=-\dfrac{\pi}{2}-arc.sina+k2\pi\left(k\in Z\right)\)

maxy=5 <=> \(sin\left(x+a\right)=1\)\(\Leftrightarrow x=\dfrac{\pi}{2}-arc.sina+k2\pi\left(k\in Z\right)\)

(P/s1:cái x ở câu c ấy trông nó ngu ngu??
 P/s2:sau khi load lại câu hỏi ở 1 tab khác ,thấy 1 câu trả lời nhưng vẫn đăng vì cảm thấy bỏ đi hơi phí :?)

21 tháng 5 2021

Áp dụng quy tắc sau: Nếu \(a\sin x+b\cos y=c\Leftrightarrow a^2+b^2\ge c^2\)

a/ \(3+1\ge y^2\Leftrightarrow4\ge y^2\Leftrightarrow-2\le y\le2\)

\(y_{max}=2\Leftrightarrow\sqrt{3}\sin x+\cos x=2\Leftrightarrow\dfrac{\sqrt{3}}{2}\sin x+\dfrac{1}{2}\cos x=1\Leftrightarrow\cos\dfrac{\pi}{6}.\sin x+\sin\dfrac{\pi}{6}.\cos x=1\)

\(\Rightarrow\sin\left(x+\dfrac{\pi}{6}\right)=1\Leftrightarrow x+\dfrac{\pi}{6}=\dfrac{\pi}{2}+k2\pi\Leftrightarrow x=\dfrac{\pi}{3}+k2\pi\)

\(y_{min}=-2\Leftrightarrow\sin\left(x+\dfrac{\pi}{6}\right)=-1\Leftrightarrow x+\dfrac{\pi}{6}=-\dfrac{\pi}{2}+k2\pi\Leftrightarrow x=-\dfrac{2}{3}\pi+k2\pi\)

20 tháng 5 2019

27 tháng 12 2017

Chọn A

y = cos6 x+ sin2xcos2x(sin2x + cos2x) + sin4x - sin2x

= cos6x + sin2x(1 - sin2x) + sin4x - sin2x = cos6x

Do đó : y' = -6cos5xsinx.

20 tháng 8 2023

Để hàm số y xác định trên R, ta cần xác định điều kiện để biểu thức trong dấu căn không âm: 1/ y = √(cos^2x + cosx - 2m + 1) Điều kiện: cos^2x + cosx - 2m + 1 ≥ 0 - Để giải bất phương trình này, ta cần tìm giá trị của m sao cho đa thức bậc 2: f(x) = cos^2x + cosx - 2m + 1 không có nghiệm trong khoảng [-∞ , +∞]. - Để f(x) không có nghiệm, ta cần xét delta của đa thức: Δ = b^2 - 4ac = 1 - 4(1)(-2m + 1) = 8m - 3 - Để f(x) không có nghiệm, ta cần Δ < 0: 8m - 3 < 0 => m < 3/8 Do đó, hàm số y = √(cos^2x + cosx - 2m + 1) xác định trên R khi m < 3/8. 2/ y = √(cos^2x - 2cosx + m) Điều kiện: cos^2x - 2cosx + m ≥ 0 - Để giải được bất phương trình này, ta cần tìm giá trị của m sao cho đa thức bậc 2: f(x) = cos^2x - 2cosx + m không có nghiệm trong khoảng [-∞, +∞]. - Để f(x) không có nghiệm, ta cần xét delta của đa thức: Δ = b^2 - 4ac = (-2)^2 - 4(1)(m) = 4 - 4m = 4(1 - m) ) - Để f(x) không có nghiệm, ta cần Δ < 0: 1 - m < 0 => m > 1 Do đó, hàm số y = √(cos^2x - 2cosx + m) xác định trên R khi m > 1. 3/ y = √(sin^4x + cos^4x - sin^2x - m) Điều kiện: sin^4x + cos^4x - sin^2x - m ≥ 0 - Để giải được bất phương trình này, ta cần tìm giá trị của m sao cho đa thức bậc 4: f(x) = sin^4x + cos^4x - sin^2x - m không có nghiệm trong khoảng [-∞, +∞]. - Để f(x) không có nghiệm, ta cần xét delta của đa thức: Δ = b^2 - 4ac = (-1)^2 - 4(1)(-m) = 1 + 4m - Để f(x) ) không có nghiệm, ta cần Δ < 0: 4m < -1 => m < -1/4 Do đó, hàm số y = √(sin^4x + cos^4x - sin^2x - m) xác định trên R khi m < -1/4.

AH
Akai Haruma
Giáo viên
5 tháng 11 2023

Ý bạn là $m\cot 2x$?

Lời giải:

$\frac{\cos 4x+\cos 2x+1}{\sin 4x+\sin 2x}=\frac{\cos ^22x-\sin ^22x+\cos 2x+1}{2\sin 2x\cos 2x+\sin 2x}$
$=\frac{2\cos ^22x-1+\cos 2x+1}{\sin 2x(2\cos 2x+1)}$

$=\frac{2\cos ^22x+\cos 2x}{\sin 2x(2\cos 2x+1)}$

$=\frac{\cos 2x(2\cos 2x+1)}{\sin 2x(2\cos 2x+1)}$

$=\frac{\cos 2x}{\sin 2x}=\cot 2x$

$\Rightarrow m=1$

9 tháng 8 2019

\(D=\frac{1+sin2x+cos2x}{1+sin2x-cos2x}=\frac{1+2sinxcosx+2cos^2x-1}{1+2sinxcosx-1+2sin^2x}\)

\(D=\frac{cosx\left(sinx+cosx\right)}{sinx\left(sinx+cosx\right)}=cotx\)

9 tháng 8 2019

\(F=\frac{sinx+sin4x+sin7x}{cosx+cos4x+cos7x}\)

\(F=\frac{2sin4xcos3x+sin4x}{2cos4xcos3x+cos4x}\)

\(F=\frac{2sin4x\left(cos3x+1\right)}{2cos4x\left(cos3x+1\right)}=tan4x\)