Tìm giá trị lớn nhất, giá trị nhỏ nhất (nếu có thể):
g, G = x2 + 6x + 4y2 - 10y + 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
g) G = x2 + 6x + 4y2 - 10y + 5
G = (x2+ 6x + 9) + 4(y2 - 2,5y + 1,5625) - 10,25
G = (x + 3)2 + 4(y - 1,25)2 - 10,25 \(\ge\)-10,25 với mọi x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+3=0\\y-1,25=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-3\\y=1,25\end{cases}}\)
Vậy MinG = -10,25 khi x = -3 và y = 1,25
h) H = -2x2 - 6x - 3y2 + 12y - 8
H = -2(x2 + 3x + 2,25) - 3(y2 - 4y + 4)+ 8,5
H = -2(x + 1,5)2 - 3(Y - 2)2 + 8,5 \(\le\)8,5 với mọi x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+1,5=0\\y-2=0\end{cases}}\)<=> \(\hept{\begin{cases}x=-1,5\\y=2\end{cases}}\)
vậy MaxH = 8,5 khi x = -1,5 và y = 2
=x^2-6x+9+4y^2-8y+4+2010
=(x-3)^2+(2y-2)^2+2010>=2010
Dấu = xảy ra khi x=3 và y=1
a) \(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)
\(minA=-3\Leftrightarrow x=2\)
b) \(B=-x^2-8x+5=-\left(x+4\right)^2+21\le21\)
\(maxB=21\Leftrightarrow x=-4\)
c) \(C=2x^2-8x+19=2\left(x-2\right)^2+11\ge11\)
\(minC=11\Leftrightarrow x=2\)
d) \(D=-3x^2-6x+1=-3\left(x+1\right)^2+4\le4\)
\(maxD=4\Leftrightarrow x=-1\)
Bài 1:
a: \(A=x^2+2x+4\)
\(=x^2+2x+1+3\)
\(=\left(x+1\right)^2+3>=3\forall x\)
Dấu '=' xảy ra khi x+1=0
=>x=-1
Vậy: \(A_{min}=3\) khi x=-1
b: \(B=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1>=1\forall x\)
Dấu '=' xảy ra khi x-10=0
=>x=10
Vậy: \(B_{min}=1\) khi x=10
c: \(C=x^2-2x+y^2+4y+8\)
\(=x^2-2x+1+y^2+4y+4+3\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\forall x\)
Dấu '=' xảy ra khi x-1=0 và y+2=0
=>x=1 và y=-2
Vậy: \(C_{min}=3\) khi (x,y)=(1;-2)
Bài 2:
a: \(A=5-8x-x^2\)
\(=-\left(x^2+8x\right)+5\)
\(=-\left(x^2+8x+16-16\right)+5\)
\(=-\left(x+4\right)^2+16+5=-\left(x+4\right)^2+21< =21\forall x\)
Dấu '=' xảy ra khi x+4=0
=>x=-4
b: \(B=x-x^2\)
\(=-\left(x^2-x\right)\)
\(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{1}{2}=0\)
=>\(x=\dfrac{1}{2}\)
c: \(C=4x-x^2+3\)
\(=-x^2+4x-4+7\)
\(=-\left(x^2-4x+4\right)+7\)
\(=-\left(x-2\right)^2+7< =7\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
d: \(D=-x^2+6x-11\)
\(=-\left(x^2-6x+11\right)\)
\(=-\left(x^2-6x+9+2\right)\)
\(=-\left(x-3\right)^2-2< =-2\forall x\)
Dấu '=' xảy ra khi x-3=0
=>x=3
A+1 = x^2+6x+9/x^2+1 = (x+3)^2/x^2+1 >= 0
=> A >= -1
Dấu "=" xảy ra <=> x+3=0 <=> x=-3
Vậy GTNN của A = -1 <=> x=-3
Tk mk nha
g) Ta có: \(G=x^2+6x+4y^2-10y+5\)
\(=x^2+6x+9+\left(2y\right)^2-2\cdot2y\cdot\frac{5}{2}+\frac{25}{4}-\frac{41}{4}\)
\(=\left(x+3\right)^2+\left(2y-\frac{5}{2}\right)^2-\frac{41}{4}\)
Ta có: \(\left(x+3\right)^2\ge0\forall x\)
\(\left(2y-\frac{5}{2}\right)^2\ge0\forall y\)
Do đó: \(\left(x+3\right)^2+\left(2y-\frac{5}{2}\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x+3\right)^2+\left(2y-\frac{5}{2}\right)^2-\frac{41}{4}\ge-\frac{41}{4}\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x+3=0\\2y-\frac{5}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\2y=\frac{5}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=\frac{5}{2}:2=\frac{5}{4}\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(G=x^2+6x+4y^2-10y+5\) là \(-\frac{41}{4}\) khi x=-3 và \(y=\frac{5}{4}\)