K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2020

\(\left(\frac{-3}{5}\right)^n:\left(\frac{9}{25}\right)^3=-\frac{3}{5}\)

=> \(\left(-\frac{3}{5}\right)^n:\left[\left(-\frac{3}{5}\right)^2\right]^3=-\frac{3}{5}\)

=> \(\left(-\frac{3}{5}\right)^n:\left(-\frac{3}{5}\right)^6=-\frac{3}{5}\)

=> \(\left(-\frac{3}{5}\right)^n=\left(-\frac{3}{5}\right)^7\)

=> n = 7

18 tháng 8 2020

\(\frac{\left(-\frac{3}{5}\right)^n}{\left(\frac{9}{25}\right)^n}=-\frac{3}{5}\)

\(\left(-\frac{\frac{3}{5}}{\frac{9}{25}}\right)^n=-\frac{3}{5}\)

\(-\left(\frac{5}{3}\right)^n=-\frac{3}{5}\)

\(\left(\frac{5}{3}\right)^n=\frac{3}{5}\)

Vậy n = -1

27 tháng 7 2023

Bài 6 :

a) \(\dfrac{625}{5^n}=5\Rightarrow\dfrac{5^4}{5^n}=5\Rightarrow5^{4-n}=5^1\Rightarrow4-n=1\Rightarrow n=3\)

b) \(\dfrac{\left(-3\right)^n}{27}=-9\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^3}=\left(-3\right)^2\Rightarrow\left(-3\right)^{n-3}=\left(-3\right)^2\Rightarrow n-3=2\Rightarrow n=5\)

c) \(3^n.2^n=36\Rightarrow\left(2.3\right)^n=6^2\Rightarrow\left(6\right)^n=6^2\Rightarrow n=6\)

d) \(25^{2n}:5^n=125^2\Rightarrow\left(5^2\right)^{2n}:5^n=\left(5^3\right)^2\Rightarrow5^{4n}:5^n=5^6\Rightarrow\Rightarrow5^{3n}=5^6\Rightarrow3n=6\Rightarrow n=3\)

27 tháng 7 2023

Bài 7 :

a) \(3^x+3^{x+2}=9^{17}+27^{12}\)

\(\Rightarrow3^x\left(1+3^2\right)=\left(3^2\right)^{17}+\left(3^3\right)^{12}\)

\(\Rightarrow10.3^x=3^{34}+3^{36}\)

\(\Rightarrow10.3^x=3^{34}\left(1+3^2\right)=10.3^{34}\)

\(\Rightarrow3^x=3^{34}\Rightarrow x=34\)

b) \(5^{x+1}-5^x=100.25^{29}\Rightarrow5^x\left(5-1\right)=4.5^2.\left(5^2\right)^{29}\)

\(\Rightarrow4.5^x=4.25^{2.29+2}=4.5^{60}\)

\(\Rightarrow5^x=5^{60}\Rightarrow x=60\)

c) Bài C bạn xem lại đề

d) \(\dfrac{3}{2.4^x}+\dfrac{5}{3.4^{x+2}}=\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{10}}\)

\(\Rightarrow\dfrac{3}{2.4^x}-\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{x+2}}-\dfrac{5}{3.4^{10}}=0\)

\(\Rightarrow\dfrac{3}{2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)+\dfrac{5}{3.4^2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)=0\)

\(\Rightarrow\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)\left(\dfrac{3}{2}+\dfrac{5}{3.4^2}\right)=0\)

\(\Rightarrow\dfrac{1}{4^x}-\dfrac{1}{4^8}=0\)

\(\Rightarrow\dfrac{4^8-4^x}{4^{x+8}}=0\Rightarrow4^8-4^x=0\left(4^{x+8}>0\right)\Rightarrow4^x=4^8\Rightarrow x=8\)

10 tháng 9 2017

a) \(\left(\frac{1}{3}\right)^m=\frac{1}{81}\)

\(\Rightarrow\frac{1}{3^m}=\frac{1}{81}\)

<=> 3m = 81

=> 3m = 34 ( 81 = 34 )

<=> m = 4

b) \(\left(\frac{3}{5}\right)^n=\left(\frac{9}{25}\right)^5\)

\(\left(\frac{3}{5}\right)^n=\frac{9}{9765625}\)

\(\Rightarrow\frac{3}{5^n}=\frac{9}{9765625}\)

=> 5n = 9765625

=> 5n = 510 ( 9765625 = 510 )

<=> n = 10

\(\left(-0,25\right)^p=\frac{1}{256}\)

\(\left(\frac{-1}{4}\right)^p=\frac{1}{256}\)

\(\Rightarrow\frac{-1}{4^p}=\frac{1}{256}\)

=> 4p = 256

=> 4p = 44 ( 256 = 44 )

<=> p = 4

13 tháng 9 2020

a) \(2^n:4=16\Rightarrow2^n:2^2=2^4\Rightarrow2^{n-2}=2^4\Rightarrow n-2=4\Rightarrow n=6\)

b) \(6\cdot2^n+3\cdot2^n=9\cdot2^9\)

=> \(\left(6+3\right)\cdot2^n=9\cdot2^9\)

=> \(9\cdot2^n=9\cdot2^9\Rightarrow n=9\)

c) \(3^n:3^2=243\)

=> \(3^{n-2}=3^5\)

=> n - 2 = 5 => n = 7

d) 25 < 5n < 3125

=> 52 < 5n < 55

=> n \(\in\){3;4}

8 tháng 12 2020

Bài 1:

a,\(A=3+3^2+3^3+...+3^{2010}\)

\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)

\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)

\(=3.40+...+3^{2007}.40\)

\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)

Vì A chia hết cho 40 nên chữ số tận cùng của A là 0

b,\(A=3+3^2+3^3+...+3^{2010}\)

\(3A=3^2+3^3+...+3^{2011}\)

\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)

\(2A=3^{2011}-3\)

\(2A+3=3^{2011}\)

Vậy 2A+3 là 1 lũy thừa của 3

1 tháng 10 2019

Lũy thừa của một số hữu tỉ

26 tháng 12 2018

ko biết mình mới học lớp 4 thôi

Con " Nguyễn Huyền Trang " đéo biết thì trả lời làm cái l*n gì

3 tháng 9 2023

a) \(S=1+5+5^2+5^3+...+5^{28}\)

\(S=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{27}+5^{28}\right)\)

\(S=1\left(1+5\right)+5^2\left(1+5\right)+...+5^{27}\left(1+5\right)\)

\(S=\left(1+5^2+...+5^{27}\right).6⋮3\left(dpcm\right)\)

b) \(S=1+5+5^2+5^3+...+5^{28}\)

\(\Rightarrow5S=5+5^2+5^3+5^4+...+5^{29}\)

\(\Rightarrow5S-S=\left(5+5^2+5^3+5^4+...+5^{29}\right)-\left(1+5+5^2+5^3+...+5^{28}\right)\)

\(\Rightarrow4S=5^{29}-1\)

\(\Rightarrow4S+1=5^{29}-1+1\)

\(\Rightarrow4S=5^{29}=5^n\)

\(\Rightarrow n=29\)

3 tháng 9 2023

a) \(S=1+5+5^2+5^3+...+5^{28}\)

\(\Rightarrow S=\left(1+5\right)+5^2\left(1+5\right)+...+5^{27}\left(1+5\right)\)

\(\Rightarrow S=6+5^2.6+...+5^{27}.6\)

\(\Rightarrow S=6\left(1+5^2+...+5^{27}\right)⋮6\)

\(\Rightarrow S=6\left(1+5^2+...+5^{27}\right)⋮3\)

\(\Rightarrow dpcm\)

b) Bạn xem lại đề

17 tháng 7 2016

3^4 . 9 .3^x = 3^7

3^4 . 3^2 . 3^x = 3^7

3^6 . 3^x = 3^7

3^x = 3

x = 1

4^x . 4^1 = 16

4^x = 16 : 4

 4^x =4

=> x=1

5^x : 5 = 25

5^x = 25 . 5 =125

=> x = 3