K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2020

a) đặt AB=x=>AC=2x

áp dụng định lý Pitago zô tam giác zuông ABC

\(AB^2+AC^2=BC^2=>x^2+4x^2=25\)

\(=>5x^2=25=>x^2=5\)

=>\(x=\sqrt{5}\)

\(=>AB=\sqrt{5};AC=2\sqrt{5}\)

b) Ta có \(AH//CD\)( từ zuông góc đến song song ) 

=> AHCD là hình thang

Áp dụng HTL ta có

\(AH=\frac{AB.AC}{BC}=\frac{\sqrt{5}.2\sqrt{5}}{5}=2=>AI=\frac{1}{3}AH=\frac{1}{3}=>HI=\frac{2}{3}\)

Áp dụng đinh lý ta lét

\(\frac{HI}{CD}=\frac{BH}{BC}=\frac{\frac{AB^2}{BC}}{BC}=\frac{AB^2}{BC^2}=\frac{5}{25}=\frac{1}{5}=>CD=5HI=10\)

Ta có \(HC=\frac{AC^2}{BC}=\frac{\left(2\sqrt{5}\right)^2}{5^2}=\frac{4}{5}\)

zậy 

\(S_{AHCD}=\frac{1}{2}\left(AH+CD\right).HC=\frac{1}{2}\left(2+10\right).\frac{4}{5}=\frac{25}{4}\)

23 tháng 9 2022

AB =2AC mà .Sửa AB=x thànhAB=x, AC=2x thành AC=x

Đề sai rồi bạn

14 tháng 12 2021

\(AB^2+AC^2=BC^2=25\Rightarrow5AC^2=25\Leftrightarrow AC=\sqrt{5}\left(cm\right)\Rightarrow AB=2\sqrt{5}\left(cm\right)\)\(CH=\dfrac{AC^2}{BC}=1\left(cm\right)\Rightarrow BH=5-1=4\left(cm\right)\\ AH=\dfrac{AB.AC}{BC}=2\\ AI=\dfrac{1}{3}AH=\dfrac{2}{3};HI=\dfrac{2}{3}AH=\dfrac{4}{3}\\ CD\text{//}AH\Rightarrow CD\text{//}HI\Rightarrow\dfrac{HI}{CD}=\dfrac{BH}{BC}=\dfrac{4}{5}\\ \Rightarrow CD=\dfrac{5}{4}HI=\dfrac{5}{4}\cdot\dfrac{4}{3}=\dfrac{5}{3}\\ \Rightarrow S_{AHCD}=\dfrac{1}{2}\cdot HC\cdot\left(AH+CD\right)=\dfrac{1}{2}\cdot1\cdot\left(2+\dfrac{5}{3}\right)=\dfrac{11}{6}\left(cm^2\right)\left(AH\text{//}CD\text{ nên }AHCD\text{ là hình thang}\right)\)

 

11 tháng 12 2018

AC=2AC là sao ạ

11 tháng 12 2018

viết lộn AB=2AC

17 tháng 12 2018

a ) ( tg là tam giác nha ) 

Xét tgABC và tgDCB ,có : 

AB = CD ( gt ) 

BC là cạnh chung 

góc B1 = góc C2 ( 2 góc so le trong của AB // CD ) 

Do đó : tgABC = tgDCB ( c - g - c ) 

b ) Ta có : tgABC = tgDCB ( cmt ) 

=> góc C1 = gócB2 ( 2 góc tương ứng ) 

=> AC//BD ( vì gócC1 và gócB2  là 2 góc so le trong của AC và BD )

c ) sai đề rồi 

d ) Ta có : AB // CD ( gt )

          và : AB = CD ( gt ) 

do đó : tứ giác ABCD là hinh bình hành ( có 2 cặp cạnh đối song song và bằng nhau ) ( 1 ) 

mà : I là trung điểm của BC ( 2 ) 

      : AD và BC cũng chính là 2 đường chéo của hình bình hành ABCD ( 3 ) 

Từ ( 1 ) (2 ) và ( 3 ) suy ra : I là trung điểm cùa AD ( vì trong hình bình hành trung điểm của một đường chéo chính là trung điểm của đường chéo còn lại ) 

15 tháng 9 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Áp dụng định lí Pi-ta-go vào tam giác vuông ABH ta có:

A B 2 = A H 2 + B H 2 ⇒ A H 2 = A B 2 - B H 2 = 10 2 - 8 2 = 36

Suy ra: AH = 6 (cm)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra: IH = AH – AI = 6 – 2 = 4 (cm)

Vì IH ⊥ BC và DC ⊥ BC nên IH // DC    (1)

Mặt khác: BH = HC (gt)     (2)

Từ (1) và (2) ta có IH là đường trung bình của tam giác BCD

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9