Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=AH^2\)
=>HB*HC=4^2=16
mà HB+HC=10cm
nên HB,HC là hai nghiệm của phương trình:
\(x^2-10x+16=0\)
=>(x-8)(x-2)=0
=>\(\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
Do đó, chúng ta sẽ có 2 trường hợp là \(\left[{}\begin{matrix}BH=8cm;CH=2cm\\BH=2cm;CH=8cm\end{matrix}\right.\)
áp dụng hệ thức lượng trong tam giác ABC
AN2=BH.BC
=>BC=AB2:BH=25
từ đó áp dụng pytago tính AC=20
lại áp dụng hệ thức lượng ta có;
AH.BC=AB.AC
=>AH=(AB.AC):BC=12
trong tam giác vuông trung tuyễn ứng vs cạnh huyền có số đo = nửa cạnh huyền
=> AM=12,5
=> HM=3,5 theo pytago
=> SAMH=1phần 2 AH.HM=21
a, xét tam giác ABC ta có
AH là đường cao=> góc AHB=90 độ
lại có \(AD\perp BE\)=> góc ADB=90 độ
=>góc AHB= góc ADB=90 độ
mà D,H là 2 đỉnh liên tiếp của tứ giác ADHB
=> tứ giác ADHB nội tiếp đường tròn đường kính AB
lấy điểm O là trung điểm AB=>O là tâm đường tròn ngoại tiếp tứ giác ADHB
b, xét tam giác ABC có BE là phân giác=> góc HBD= góc ABD
lại có tam giác ABC vuông tại A=> góc ABE+ góc AEB=90 độ
hay góc ABD+ góc AED =90 độ(1)
xét tam giác ADE vuông tại E (vì AD\(\perp BE\))
=> góc EAD+góc AED=90 độ(2)
từ(1)(2)=> góc ABD= góc EAD
=>góc EAD= góc HBD(= góc ABD)
c, xét đường tròn(O) => OA=OH=OB=1/2.AB=\(\dfrac{a}{2}\)=R
có OH=OB=>tam giác BOH cân tại O
lại có góc ABC=60 độ hay góc OBH=60 độ=> tam giác OBH đều
=> góc OBH=góc BOH=60 độ=>góc AOH=120 độ( kề bù)
=>góc AOH=số đo cung AOH=120 độ( góc ở tâm)
=> S quạt AOH=\(\dfrac{\pi.R^2.n}{360}=\dfrac{\pi.\left(\dfrac{a}{2}\right)^2.120}{360}=\dfrac{\pi.a^2.30}{360}=\dfrac{\pi.a^2}{12}\)