Cho x<2 và x+y > 5 C/m: \(5x^2+2y^2+8y>62\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1)
PT tương đương \((x^2+2y^2)^2=y^2-6y+16=(y-3)^2+7\)
\(\Leftrightarrow (x^2+2y^2-y+3)(x^2+2y^2+y-3)=7\)
Ta thấy \(x^2+2y^2-y+3=x^2+y^2+(y-\frac{1}{2})^2+\frac{11}{4}>2\)
Do đó \(\left\{\begin{matrix}x^2+2y^2-y+3=7\\x^2+2y^2+y-3=1\end{matrix}\right.\Rightarrow6-2y=6\Rightarrow y=0\)
\(\Rightarrow x^2=4\Rightarrow x=\pm 2\)
Vậy \((x,y)=(2,0),(-2,0)\)
Bài 2)
PT tương đương \(5x^2+x(5y-7)+(5y^2+14y)=0\)
Để phương trình có nghiệm thì \(\Delta =(5y-7)^2-20(5y^2+14y)\geq 0\)
\(\Leftrightarrow -75y^2-350y+49\geq 0\)
Giải BPT trên thu được \(\frac{-35-14\sqrt{7}}{15}\leq y\leq \frac{-35+14\sqrt{7}}{15}\)
\(\Rightarrow -4\le y\le 0\). Do đó \(y\in \left\{-4,-3,-2,-1,0\right\}\)
Kết hợp với \(\Delta\) là số chính phương nên \(y=-1,0\) tương ứng với \(x=3,x=0\)
Vậy \((x,y)=(3,-1),(0,0)\)
Câu 3)
Ta có \(A=\frac{x}{z}+\frac{z}{y}+3y=\frac{x}{z}+\frac{z}{y}+y(x+y+z)\)
Áp dụng bất đẳng thức AM-GM:
\(\left\{\begin{matrix} \frac{z}{y}+yz\geq 2z\\ z\leq y\Rightarrow \frac{x}{z}+xy\geq\frac{x}{y}+xy\geq 2x \end{matrix}\right.\)
\(\Rightarrow A\geq 2(x+z)+y^2=2(3-y)+y^2=(y-1)^2+5\geq 5\)
Do đó ta có đpcm
Dấu bằng xảy ra khi \(x=y=z=1\)
1, x\(^2\) - 5x = 0
\(\Rightarrow\)x(x-5) = 0
Th1: x = 0
Th2: x- 5 =0
x = 5
2, \(|x-9|\) .( -8) = - 16
\(|x-9|\) = (- 16). ( -8) = 128
Th1: x - 9 = 128
x = 128 + 9 = 137
Th2: x - 9 = - 128
x = -128 + 9 = - 119
3, Th1: 4- 5x = 24
5x = 4- 24 = -20
x = - 20 :5 = -4
Th2: 4- 5x = -24
5x = 4- (-24) = 28
x = 28 :5= 5,6
Vì x < hoặc = 0 \(\Rightarrow\) x = -4
4, x.( x - 2) > 0
\(\Rightarrow\) x và ( x- 2) cùng dấu
Th1: x và (x -2) cùng dương
+ \(\Rightarrow\) x > 0
+ (x - 2) > 0 \(\Rightarrow\) x > 2
Th2: x và ( x- 2) cùng âm
+ \(\Rightarrow\) x < 0
+ ( x - 2) < 0 \(\Rightarrow\) x < 2
Từ 2 trường hợp trên \(\Rightarrow\) x > 2 hoặc x <2
5, x.( x - 2) < 0
\(\Rightarrow\) x và ( x- 2) khác dấu
Th1: x âm và ( x- 2) dương
+ \(\Rightarrow\) x < 0
+ (x -2 ) > 0 \(\Rightarrow\) x > 2
Th2: x dương và ( x- 2 ) âm
+ \(\Rightarrow\) x >0
+ (x - 2) < 0 \(\Rightarrow\) x < 2
1) Ta có: 3x - x2 = -(x2 - 3x + 9/4) + 9/4 = -(x - 3/2)2 + 9/4
Ta luôn có: -(x - 3/2)2 \(\le\)0 \(\forall\)x
=> -(x - 3/2)2 + 9/4 \(\le\)9/4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy Max của 3x - x2 là 9/4 tại x = 3/2
2) Ta có : -(x2 + y2) + x + 3y+ 10 = -x2 - y2 + x + 3y + 10 = -(x2 - x + 1/4) - (y2 -3y + 9/4) + 25/2 = -(x - 1/2)2 - (y - 3/2)2 + 25/2
Ta luôn có: -(x - 1/2)2 \(\le\)0 \(\forall\)x
-(y - 3/2)2 \(\le\)0 \(\forall\)y
=> -(x - 1/2)2 - (y - 3/2)2 + 25/2 \(\le\)25/2 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{3}{2}=0\end{cases}}\) <=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{2}\end{cases}}\)
Vậy ...
a) \(5x^2\)\(\left(x-2y\right)\)\(-\)\(15x\)\(\left(x-2y\right)\)
\(=\left(x-2y\right)\left(5x^2-15x\right)\)
\(=5x\left(x-2y\right)\left(x-3\right)\)
b) \(3\left(x-y\right)\)\(-\)\(5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(3+5x\right)\)
c) \(10x\left(x-y\right)\)\(-\)\(8y\left(y-x\right)\)
\(=\)\(10x\left(x-y\right)+8y\left(x-y\right)\)
\(=\left(x-y\right)\left(10x+8y\right)\)
\(=2\left(5x+4\right)\left(x-y\right)\)
d) \(x^2\)\(\left(x-5\right)\)\(+\)\(4\)\(\left(5-x\right)\)
\(=x^2\)\(\left(x-5\right)\)\(-\)\(4\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2-4\right)\)
\(=\left(x-5\right)\left(x-2\right)\left(x-2\right)\)
a) \(5x^2\left(x-2y\right)-15x\left(x-2y\right)\)
\(=\left(x-2y\right)\left(5x^2-15x\right)\)
\(=\left(x-2y\right)\left(x-3\right)5x\)
b)\(3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(3+5x\right)\left(x-y\right)\)
c)\(10x\left(x-y\right)-8y\left(y-x\right)\)
\(=10x\left(x-y\right)+8y\left(x-y\right)\)
\(=\left(10x+8y\right)\left(x-y\right)\)
\(=2\left(5x+4y\right)\left(x-y\right)\)
d)\(x^2\left(x-5\right)+4\left(5-x\right)\)
\(=x^2\left(x-5\right)-4\left(x-5\right)\)
\(=\left(x^2-4\right)\left(x-5\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x-5\right)\)
bài 1 chắc điểm rơi x=2;y=4, cách làm tạm thời mk chưa nghĩ ra
bài 2: P=(x^2+4y^2)/(x-2y)=[x^2+(2y)^2]/(x-2y)=[(x-2y)^2+4xy]/(x-2y)=(x-2y) + 4xy/(x-2y)=(x-2y)+4/(x-2y) do xy=1
Áp dụng bđt AM-GM , ta có P >/ 4 =>minP=4
đẳng thức xảy ra khi đồng thời x-2y=2,x>2y,xy=1 ,tự giải hệ này ra nhé
Bài 3:
a: Thay x=2 và y=5 vào (d), ta được:
2(a-1)+1=5
=>2(a-1)=4
=>a-1=2
=>a=3
b: Thay x=-2 và y=0 vào (d), ta được:
-2(a-1)+1=0
=>-2a+2+1=0
=>-2a+3=0
=>a=3/2
c: (d1): y=2x+1
(d2): y=1/2x+1
Tọa độ giao là:
2x+1=1/2x+1 và y=2x+1
=>x=0 và y=1
=>B(0;1)
d: Tọa độ A là:
y=0 và 2x+1=0
=>x=-1/2; y=0
Tọa độ C là:
y=0 và 1/2x+1=0
=>y=0và x=-2
B(0;1); A(-1/2;0); C(0;-2)
\(BA=\sqrt{\left(-\dfrac{1}{2}-0\right)^2+\left(0-1\right)^2}=\dfrac{\sqrt{5}}{2}\)
\(BC=\sqrt{\left(0-0\right)^2+\left(-2-1\right)^2}=3\)
\(AC=\sqrt{\left(0+\dfrac{1}{2}\right)^2+\left(-2-0\right)^2}=\dfrac{\sqrt{17}}{2}\)
\(cos\widehat{BAC}=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=-\dfrac{7\sqrt{85}}{85}\)
=>\(sin\widehat{BAC}=\dfrac{6\sqrt{85}}{85}\)
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinBAC\)
\(=\dfrac{1}{2}\cdot\dfrac{\sqrt{5}}{2}\cdot\dfrac{\sqrt{17}}{2}\cdot\dfrac{6\sqrt{85}}{85}=\dfrac{6}{8}=\dfrac{3}{4}\)
sửa đề thành: \(\hept{\begin{cases}x\le2\\x+y\ge5\end{cases}}\)chứng minh \(5x^2+2y^2+8y\ge62\)
đặt M=\(5x^2+2y^2+8y\)
ta có \(\hept{\begin{cases}x\le2\\x+y\ge5\end{cases}}\)nên đặt\(\hept{\begin{cases}x=2-a\\x+y=5+b\end{cases}\Leftrightarrow\hept{\begin{cases}x=2-a\\y=3+a+b\end{cases}\left(a,b\ge0\right)}}\)
lúc đó \(M=5x^2+2y^2+8y=5\left(2-a\right)^2+2\left(3+a+b\right)^2+8\left(3+a+b\right)\)
\(M=7a^2+4ab+2b^2+20b+62\ge62\)vì \(a,b\ge0\)
dấu "=" xảy ra khi a=b=0 tức là x=2 và y=3