Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1)
PT tương đương \((x^2+2y^2)^2=y^2-6y+16=(y-3)^2+7\)
\(\Leftrightarrow (x^2+2y^2-y+3)(x^2+2y^2+y-3)=7\)
Ta thấy \(x^2+2y^2-y+3=x^2+y^2+(y-\frac{1}{2})^2+\frac{11}{4}>2\)
Do đó \(\left\{\begin{matrix}x^2+2y^2-y+3=7\\x^2+2y^2+y-3=1\end{matrix}\right.\Rightarrow6-2y=6\Rightarrow y=0\)
\(\Rightarrow x^2=4\Rightarrow x=\pm 2\)
Vậy \((x,y)=(2,0),(-2,0)\)
Bài 2)
PT tương đương \(5x^2+x(5y-7)+(5y^2+14y)=0\)
Để phương trình có nghiệm thì \(\Delta =(5y-7)^2-20(5y^2+14y)\geq 0\)
\(\Leftrightarrow -75y^2-350y+49\geq 0\)
Giải BPT trên thu được \(\frac{-35-14\sqrt{7}}{15}\leq y\leq \frac{-35+14\sqrt{7}}{15}\)
\(\Rightarrow -4\le y\le 0\). Do đó \(y\in \left\{-4,-3,-2,-1,0\right\}\)
Kết hợp với \(\Delta\) là số chính phương nên \(y=-1,0\) tương ứng với \(x=3,x=0\)
Vậy \((x,y)=(3,-1),(0,0)\)
Câu 3)
Ta có \(A=\frac{x}{z}+\frac{z}{y}+3y=\frac{x}{z}+\frac{z}{y}+y(x+y+z)\)
Áp dụng bất đẳng thức AM-GM:
\(\left\{\begin{matrix} \frac{z}{y}+yz\geq 2z\\ z\leq y\Rightarrow \frac{x}{z}+xy\geq\frac{x}{y}+xy\geq 2x \end{matrix}\right.\)
\(\Rightarrow A\geq 2(x+z)+y^2=2(3-y)+y^2=(y-1)^2+5\geq 5\)
Do đó ta có đpcm
Dấu bằng xảy ra khi \(x=y=z=1\)
=>5x^2+2y^2<2xy+4x+2y+1
=>5x^2+2y^2-2xy-4x-2y-1<0
=>x^2-2xy+y^2+4x^2-4x+1+y^2-2y+1<2
=>(x-y)^2+(2x-1)^2+(y-1)^2<2
=>2x-1=1 và y-1=0
=>y=1 và x=1
Câu 1:
\(P=\dfrac{x}{4}+\dfrac{3x}{4}+\dfrac{2y}{4}+\dfrac{2y}{4}+\dfrac{3z}{4}+\dfrac{z}{4}+\dfrac{3}{x}+\dfrac{9}{2y}+\dfrac{4}{z}\)
\(P=\dfrac{1}{4}\left(x+2y+3z\right)+\left(\dfrac{3x}{4}+\dfrac{3}{x}\right)+\left(\dfrac{2y}{4}+\dfrac{9}{2y}\right)+\left(\dfrac{z}{4}+\dfrac{4}{z}\right)\)
\(\Rightarrow P\ge\dfrac{20}{4}+2\sqrt{\dfrac{3x}{4}.\dfrac{3}{x}}+2\sqrt{\dfrac{2y}{4}.\dfrac{9}{2y}}+2\sqrt{\dfrac{z}{4}.\dfrac{4}{z}}=5+3+3+2=13\)
\(\Rightarrow P_{min}=13\) khi \(\left\{{}\begin{matrix}x+2y+3z=20\\\dfrac{3x}{4}=\dfrac{3}{x}\\\dfrac{2y}{4}=\dfrac{9}{2y}\\\dfrac{z}{4}=\dfrac{4}{z}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\\z=4\end{matrix}\right.\)
Câu 2:
Ta có
\(ab+4\ge2\sqrt{4ab}=4\sqrt{ab}\Rightarrow2b\ge4\sqrt{ab}\Rightarrow\sqrt{\dfrac{b}{a}}\ge2\Rightarrow\dfrac{b}{a}\ge4\)
\(P=\dfrac{ab}{a^2+2b^2}=\dfrac{1}{\dfrac{a}{b}+\dfrac{2b}{a}}=\dfrac{1}{\dfrac{a}{b}+\dfrac{b}{16a}+\dfrac{31b}{16a}}\)
\(\Rightarrow P\le\dfrac{1}{2\sqrt{\dfrac{a}{b}.\dfrac{b}{16a}}+\dfrac{31}{16}.\dfrac{b}{a}}\le\dfrac{1}{2.\dfrac{1}{4}+\dfrac{31}{16}.4}=\dfrac{4}{33}\)
\(\Rightarrow P_{max}=\dfrac{4}{33}\) khi \(\left\{{}\begin{matrix}b=4a\\ab+4=2b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=4\end{matrix}\right.\)
Cho mình hỏi câu 1 vì sao bạn lại phân tích được \(2\sqrt{...}\), ....
Tacó \(\Delta\)=(-7)2-4x1x2=41>0 =>\(\sqrt{_{ }x1}\)=\(\dfrac{7+\sqrt{41}}{2}\)=>\(_{x1}\)=\(\dfrac{\left(7+\sqrt{41}\right)^2}{4}\)=\(\dfrac{45+7\sqrt{41}}{2}\) =>\(\sqrt{_{ }x2}\)=\(\dfrac{7-\sqrt{41}}{2}\)=>\(_{x_2}\)=\(\dfrac{\left(7-\sqrt{41^{ }}\right)^2}{4}\)=\(\dfrac{45-7\sqrt{41}}{2}\) so sánh với điều kiện X>_0
Bài 3:
a: Thay x=2 và y=5 vào (d), ta được:
2(a-1)+1=5
=>2(a-1)=4
=>a-1=2
=>a=3
b: Thay x=-2 và y=0 vào (d), ta được:
-2(a-1)+1=0
=>-2a+2+1=0
=>-2a+3=0
=>a=3/2
c: (d1): y=2x+1
(d2): y=1/2x+1
Tọa độ giao là:
2x+1=1/2x+1 và y=2x+1
=>x=0 và y=1
=>B(0;1)
d: Tọa độ A là:
y=0 và 2x+1=0
=>x=-1/2; y=0
Tọa độ C là:
y=0 và 1/2x+1=0
=>y=0và x=-2
B(0;1); A(-1/2;0); C(0;-2)
\(BA=\sqrt{\left(-\dfrac{1}{2}-0\right)^2+\left(0-1\right)^2}=\dfrac{\sqrt{5}}{2}\)
\(BC=\sqrt{\left(0-0\right)^2+\left(-2-1\right)^2}=3\)
\(AC=\sqrt{\left(0+\dfrac{1}{2}\right)^2+\left(-2-0\right)^2}=\dfrac{\sqrt{17}}{2}\)
\(cos\widehat{BAC}=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=-\dfrac{7\sqrt{85}}{85}\)
=>\(sin\widehat{BAC}=\dfrac{6\sqrt{85}}{85}\)
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinBAC\)
\(=\dfrac{1}{2}\cdot\dfrac{\sqrt{5}}{2}\cdot\dfrac{\sqrt{17}}{2}\cdot\dfrac{6\sqrt{85}}{85}=\dfrac{6}{8}=\dfrac{3}{4}\)
sửa đề thành: \(\hept{\begin{cases}x\le2\\x+y\ge5\end{cases}}\)chứng minh \(5x^2+2y^2+8y\ge62\)
đặt M=\(5x^2+2y^2+8y\)
ta có \(\hept{\begin{cases}x\le2\\x+y\ge5\end{cases}}\)nên đặt\(\hept{\begin{cases}x=2-a\\x+y=5+b\end{cases}\Leftrightarrow\hept{\begin{cases}x=2-a\\y=3+a+b\end{cases}\left(a,b\ge0\right)}}\)
lúc đó \(M=5x^2+2y^2+8y=5\left(2-a\right)^2+2\left(3+a+b\right)^2+8\left(3+a+b\right)\)
\(M=7a^2+4ab+2b^2+20b+62\ge62\)vì \(a,b\ge0\)
dấu "=" xảy ra khi a=b=0 tức là x=2 và y=3