K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 8 2020

Hai tam giác vuông ABE và ACF có góc A chung nên đồng dạng

\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\Rightarrow\frac{AE}{AB}=\frac{AF}{AC}\)

\(\Rightarrow\Delta AEF\sim\Delta ABC\) (c.g.c)

\(\Rightarrow\frac{EF}{BC}=\frac{AE}{AB}\)

Trong tam giác vuông ABE: \(cosA=\frac{AE}{AB}\Rightarrow\frac{AE}{AB}=\frac{1}{2}\)

\(\Rightarrow\frac{EF}{BC}=\frac{1}{2}\Rightarrow BC=20\)

\(\Rightarrow\Delta AEF\) đồng dạng tam giác \(ABC\) theo tỉ số đồng dạng \(k=\frac{1}{2}\)

\(\Rightarrow S_{AEF}=k^2.S_{ABC}=25\)

20 tháng 9 2021

hứng minh được AEB \backsim AFC, từ đó có \dfrac{AE}{AB} = \dfrac{AF}{AC}t.AE phần AB=AF phần AC

Ta có: \Delta AEF\backsim\Delta ABC (g.c.g)
b, từ câu a) suy ra EF phần BC=AE phần AB=cos A=cos60 độ =1 phần 2
=> BC=10cm 
c) Saef phần Sabc=(AE phần AB)^2=cos^2 A=1 phần 4 => SAEF =1 phần 4 SABC=25cm^2

20 tháng 9 2021

 

loading...
15 tháng 12 2021

Xét tam giác AEF và tam giác ABC có:

A chung

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\left(=cosA\right)\)

\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c.g.c\right)\)

\(\Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=cos^2A=1-sin^2A\)

15 tháng 12 2021

\(1-\sin^2A=\cos^2A=\dfrac{AF^2}{AC^2}\left(1\right)\)

Ta có \(\widehat{AEB}=\widehat{AFC}=90^0\Rightarrow\Delta AEB\sim\Delta AFC\left(g.g\right)\)

\(\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\Rightarrow\Delta AEF\sim\Delta ABC\left(c.g.c\right)\\ \Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AF}{AC}\right)^2=\dfrac{AF^2}{AC^2}\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\)

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc AFE=góc ACB

=>ΔAFE đồng dạng với ΔACB

=>\(\dfrac{S_{ABC}}{S_{AEF}}=\left(\dfrac{AB}{AE}\right)^2=4\)

=>\(S_{ABC}=4\cdot S_{AEF}\)