K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 8 2020

Hai tam giác vuông ABE và ACF có góc A chung nên đồng dạng

\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\Rightarrow\frac{AE}{AB}=\frac{AF}{AC}\)

\(\Rightarrow\Delta AEF\sim\Delta ABC\) (c.g.c)

\(\Rightarrow\frac{EF}{BC}=\frac{AE}{AB}\)

Trong tam giác vuông ABE: \(cosA=\frac{AE}{AB}\Rightarrow\frac{AE}{AB}=\frac{1}{2}\)

\(\Rightarrow\frac{EF}{BC}=\frac{1}{2}\Rightarrow BC=20\)

\(\Rightarrow\Delta AEF\) đồng dạng tam giác \(ABC\) theo tỉ số đồng dạng \(k=\frac{1}{2}\)

\(\Rightarrow S_{AEF}=k^2.S_{ABC}=25\)

20 tháng 9 2021

hứng minh được AEB \backsim AFC, từ đó có \dfrac{AE}{AB} = \dfrac{AF}{AC}t.AE phần AB=AF phần AC

Ta có: \Delta AEF\backsim\Delta ABC (g.c.g)
b, từ câu a) suy ra EF phần BC=AE phần AB=cos A=cos60 độ =1 phần 2
=> BC=10cm 
c) Saef phần Sabc=(AE phần AB)^2=cos^2 A=1 phần 4 => SAEF =1 phần 4 SABC=25cm^2

20 tháng 9 2021

 

loading...
15 tháng 12 2021

Xét tam giác AEF và tam giác ABC có:

A chung

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\left(=cosA\right)\)

\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c.g.c\right)\)

\(\Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=cos^2A=1-sin^2A\)

15 tháng 12 2021

\(1-\sin^2A=\cos^2A=\dfrac{AF^2}{AC^2}\left(1\right)\)

Ta có \(\widehat{AEB}=\widehat{AFC}=90^0\Rightarrow\Delta AEB\sim\Delta AFC\left(g.g\right)\)

\(\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\Rightarrow\Delta AEF\sim\Delta ABC\left(c.g.c\right)\\ \Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AF}{AC}\right)^2=\dfrac{AF^2}{AC^2}\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\)

16 tháng 6 2021

a) Xét \(\Delta BAE\) và \(\Delta CAF\) có:

\(\widehat{A}\) chung

\(\widehat{AEB}=\widehat{CFA}=90^0\)

nên \(\Delta BAE\sim\Delta CAF\left(g.g\right)\) \(\Rightarrow\dfrac{BA}{CA}=\dfrac{AE}{AF}\)\(\Leftrightarrow\dfrac{AB}{AE}=\dfrac{AC}{AF}\) 

Xét \(\Delta ABC\) và \(\Delta AEF\) có:

Góc A chung

\(\dfrac{AB}{AE}=\dfrac{AC}{AF}\)

nên \(\Delta ABC\sim\Delta AEF\left(c.g.c\right)\) \(\Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=cos^2A=\dfrac{1}{2}\)

\(\Rightarrow2S_{AEF}=S_{ABC}=S_{AEF}+S_{BFEC}\) \(\Leftrightarrow S_{AEF}=S_{BFEC}\) (dpcm)

b) Có  \(\widehat{AFE}=\widehat{ACB}\) (do \(\Delta ABC\sim\Delta AEF\)

\(\Leftrightarrow90^0-\widehat{AFE}=90^0-\widehat{ACB}\)

\(\Leftrightarrow\widehat{EFC}=\widehat{DAC}\) mà \(\widehat{C}\) chung \(\Rightarrow\Delta EFC\sim\Delta HAC\left(g.g\right)\) 

\(\Rightarrow\dfrac{EF}{HA}=\dfrac{FC}{AC}\)\(\Leftrightarrow\dfrac{EF}{HA}=sinA\)\(\Leftrightarrow EF=HA.sinA\)

c)CM được:\(\Delta DHC\sim\Delta FBC\left(g.g\right)\)\(\Rightarrow\dfrac{HD}{BF}=\dfrac{CH}{BC}\Leftrightarrow\dfrac{HD.BC}{BF}=CH\)

\(\Delta HEC\sim\Delta AFC\left(g.g\right)\)\(\Rightarrow\dfrac{HE}{AF}=\dfrac{HC}{AC}\) \(\Leftrightarrow\dfrac{HE.AC}{AF}=HC\)

Xét \(S_{BHC}.tanB-S_{HAC}.tanA\)\(=\dfrac{1}{2}.HD.BC.\dfrac{FC}{BF}-\dfrac{1}{2}.HE.AC.\dfrac{FC}{AF}\)

\(=\dfrac{1}{2}.CH.FC-\dfrac{1}{2}.HC.FC=0\) \(\Leftrightarrow S_{BHC}.tanB-S_{HAC}.tanA=0\) 

\(\Leftrightarrow\dfrac{S_{BHC}}{tanA}=\dfrac{S_{HAC}}{tanB}\) , CM tương tự \(\Rightarrow\dfrac{S_{HAC}}{tanB}=\dfrac{S_{HAB}}{tanC}\) 

=>dpcm

8 tháng 10 2015

A B C E F H O I K

a) Nối HK; BK; CK

+) Góc ACK ; góc ABK là góc nội tiếp chắn nửa đường tròn (O;R) => góc ACK = 90; góc ABK = 90o

=> AB | BK; AC | CK

Mà AB | CF; AC | BE nên CF // BK ; BE // CK => T/g BHCK là hình bình hành => 2 đường chéo BC ; HK cắt nhau tại trung điểm của mỗi đường

Mà I là trung điểm của BC => I là trung điểm của HK

+) Xét tam giác AKH có: O; I là trung điểm của AK; HK => OI là đường trung bình của tam giác AKH => AH = 2.OI

b) +) Góc BAC là nội tiếp chắn cung BC => Góc BAC = 1/2 góc BOC ( Mối liên hệ giữa góc ở tâm và góc nội tiếp)

=> góc BOC = 2.60= 120. Mà tam giác BOC cân tại O ; OI là đường trung tuyến nên đồng thời là đường p/g và đường cao

=> góc BOI = 1/2 góc BOC = 60

+) Xét tam giác vuông BIO có: BI = OB.sin BOI = R. sin 60\(\frac{R\sqrt{3}}{2}\) => BC = 2.BI = \(R\sqrt{3}\)

Vậy....

24 tháng 12 2018

a) Xét ΔABE  và ΔACF có

Alà góc chung

AEB=AFC(=90^O)

=> ΔABE đồng dạng ΔACF (g.g)

=>AF/AE​=AC/AB​

=> AB/AE​=AC/AF​

XétΔAEF và  ΔABC có

AB/AE​=AC/AF​

Và Agóc chung

Suy raΔAEF đồng dạngΔABC( c.g.c)