Tính x,y
(x-1)(y-1)+2√xy =1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=x-\dfrac{3}{2}+2y\)
b: \(=\dfrac{1}{x\left(y-x\right)}-\dfrac{1}{y\left(y-x\right)}=\dfrac{y-x}{xy\left(y-x\right)}=\dfrac{1}{xy}\)
(x+y)^2 =a^2
x^2 +2xy +y^2 =a^2
x^2+y^2 =a^2-2xy =a^2 -2b
x^3 +y^3 = (x+y)(x^2 -xy +y^2)
=a(a^2-2b-b)
=a(a^2-3b)
=a^3- 3ab
(x^2 +y^2)^2=(a^2-2b)^2 ( cái này tính cho x^4 + y^4)
tương tự như câu đầu tiên
x^5+ y^5 (cái đó mình không biết)
\(\left\{{}\begin{matrix}S=x+y=-p\\P=xy=q\end{matrix}\right.\)
Nên \(x;y\) là nghiệm của phương trình
\(X^2-SX+P=0\)
\(\Leftrightarrow X^2+pX+q=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-p\pm\sqrt[]{p^2-4q}}{2}\\y=\dfrac{-p\mp\sqrt[]{p^2-4q}}{2}\end{matrix}\right.\left(1\right)\)
\(B=x\left(1+y\right)-y\left(xy-1\right)-x^2\)
\(\Leftrightarrow B=x+xy-xy^2+y-x^2\)
\(\Leftrightarrow B=x+y+xy-x\left(x+y\right)\)
\(\Leftrightarrow B=\left(x+y\right)\left(1-x\right)+xy\)
\(\Leftrightarrow B=-p\left(1-x\right)+q\)
\(\left(1\right)\Leftrightarrow B=-p\left[\left(1-\dfrac{-p\pm\sqrt[]{p^2-4q}}{2}\right)\right]+q\)
Áp dụng hằng đẳng thức a2 - b2 = ( a - b ) ( a + b) ta đc:
a)\(\left(x^2+x+1\right)\left(x^2-x-1\right)\)
\(=\left(x^2\right)^2-\left[\left(x+1\right)\right]^2\)
\(=x^4-\left(x^2+2x+1\right)\)
\(=x^4-x^2-2x-1\)
b)MK sửa đề nha\(\left(x^2+xy+y^2\right)\left(x^2-xy-y^2\right)\)
\(=\left(x^2\right)^2-\left[\left(xy+y^2\right)\right]^2\)
\(=x^4-x^2y^2-2xy^3-y^4\)
a. ta có : \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\times\left(-6\right)=13\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3\times\left(-6\right)\times1=19\)
\(x^5+y^5=\left(x+y\right)\left[x^4-x^3y+x^2y^2-xy^3+y^4\right]\)
\(=\left(x+y\right)\left[\left(x^2+y^2\right)^2-x^2y^2-xy\left(x^2+y^2\right)\right]=1.\left(13^2-\left(-6\right)^2-\left(-6\right).13\right)=211\)
b.\(x^2+y^2=\left(x-y\right)^2+2xy=1+2\times6=13\)
\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+6.3.1=19\)
\(x^5-y^5=\left(x-y\right)\left[\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\right]\)
\(=\left(x-y\right)\left[\left(x^2+y^2\right)^2-x^2y^2+xy\left(x^2+y^2\right)\right]=1.\left(13^2-6^2+6.13\right)=211\)
Cho 0< x,y <1 thỏa mãn x/(1-x) + y/(1-y) = 1. Tính giá trị biểu thức:
P = x + y + √( x^2 - xy + y^2 )
lm trên symbolab.com