K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Kẻ đường cao AH, BE

Ta có : AB // CD
Mà AH $\perp$ CD
BE $\perp$ CD
$\implies$ AH, BE $\perp$ AB, CD
$\implies$ ABEH là hình chữ nhật

Xét $\triangle$ ADH vuông tại H và $\triangle$ BCE vuông tại E có :
AD = BC
$\hat{D} = \hat{C}$
Vậy $\triangle$ ADH = $\triangle$ BCE (ch-gn)

Lại có : $DH+CE = CD - HE = CD - AB = 14 - 4 = 10$
Mà $DH = CE$ ( $\triangle$ ADH = $\triangle$ BCE )
$\implies DH = CE = \dfrac{10}2 = 5$

Xét $\triangle$ BEC vuông tại E có :
$BE^2 = BC^2-CE^2=13^2-5^2=169-25=144 \\
\implies BE = 12$

Xét $\triangle$ BDE vuông tại E có :
$BD^2=BE^2+DE^2=BE^2+(DH+HE)^2=BE^2+(DH+AB)^2=12^2 +(5+4)^2=12^2+9^2=144+81=225$
$\implies$ BD = AC = 15