K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2020

a) Đặt x +y = S; xy = P => S; P nguyên 

Ta có: \(x^2+y^2=\left(xy-3\right)^2\Leftrightarrow\left(x+y\right)^2-2xy=\left(xy\right)^2-6xy+9\)

=> \(S^2-2P=P^2-6P+9\)

<=> \(S^2-\left(P-2\right)^2=5\)

<=> \(\left(S-P+2\right)\left(S+P-2\right)=5\)

TH1: \(\hept{\begin{cases}S-P+2=5\\S+P-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}S-P=3\\S+P=3\end{cases}\Leftrightarrow\hept{\begin{cases}S=3\\P=0\end{cases}}}\)

khi đó: \(\hept{\begin{cases}x+y=3\\xy=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3;y=0\\x=0;y=3\end{cases}}\)

TH2: \(\hept{\begin{cases}S-P+2=1\\S+P-2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}S-P=-1\\S+P=7\end{cases}\Leftrightarrow\hept{\begin{cases}S=3\\P=4\end{cases}}}\)

khi đó: \(\hept{\begin{cases}x+y=3\\xy=4\end{cases}}\)<=> không tồn tại x; y nguyên 

TH3: \(\hept{\begin{cases}S-P+2=-5\\S+P-2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}S-P=-7\\S+P=1\end{cases}\Leftrightarrow\hept{\begin{cases}S=-3\\P=4\end{cases}}}\)

khi đó: \(\hept{\begin{cases}x+y=-3\\xy=4\end{cases}}\)<=> không tồn tại x; y nguyên 

TH4: \(\hept{\begin{cases}S-P+2=-1\\S+P-2=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}S-P=-3\\S+P=-3\end{cases}\Leftrightarrow\hept{\begin{cases}S=-3\\P=0\end{cases}}}\)

Khi đó: \(\hept{\begin{cases}x+y=-3\\xy=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3;y=0\\x=0;y=-3\end{cases}}\)

Vậy  có 4 nghiệm nguyên ( 3; 0) ( -3: 0) ( 0; 3) ( 0; -3)

25 tháng 7 2023

\(x^2+y^2+2\left(x+y\right)-xy=0\)

\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)

\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)

\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)

Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm 

24 tháng 7 2023

\(x^2+y^2-2\left(x+y\right)=xy\)

\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)

\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)

Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)

1 tháng 5 2019

Chọn C.

Phương pháp: Đưa bài toán về tìm m để hệ có nghiệm duy nhất.

17 tháng 11 2019

7 tháng 12 2019

2 tháng 6 2017

log x 2 + y 2 + 2 4 x + 4 y - 4 ≥ 1

⇔ 4 x + 4 y - 4 ≥ x 2 + y 2 + 2 ⇔ x - 2 2 + y - 2 2 ≤ 2

Đây là tập hợp tất cả các điểm nằm trên và trong đường tròn tâm I(2;2) bán kính ℝ ' = m .

Ta có I I ' = 10 . m nhỏ nhất để tồn tại duy nhất cặp (x;y) sao cho x 2 + y 2 + 2 x - 2 y + 2 - m = 0  thì hai đường tròn nói trên tiếp xúc ngoài

⇒ R + R ' = I I ' ⇔ m + 2 = 10 ⇔ m = 10 - 2 2

Đáp án cần chọn là B

16 tháng 7 2019

Đáp án A

1 tháng 2 2019

6 tháng 10 2017

nên đường thẳng 3x + 4y - m = 0 là tiếp tuyến của đường tròn (x – 2)2 + (y – 2)2 = 2.

Chọn C.