K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2020

\(=\frac{6x-3}{x}.\left(\frac{3x^2}{4x^2-1}\right)\)

\(=\frac{9x}{\left(2x-1\right)\left(2x+1\right)}.\left(\frac{2x-1}{1}\right)\)

\(=\frac{9x}{2x+1}\)

12 tháng 8 2020

Bài làm 

\(\frac{6x-3}{x}:\frac{4x^2-1}{3x^2}=\frac{6x-3}{x}.\frac{3x^2}{4x^2-1}\)

\(=\frac{18x^3-9x^2}{4x^3-x}\)

17 tháng 12 2019

a) \(\frac{2x-7}{10x-4}-\frac{3x+5}{4-10x}\)

\(=\frac{2x-7}{10x-4}-\frac{-\left(3x+5\right)}{-\left(4-10x\right)}\)

\(=\frac{2x-7}{10x-4}-\frac{5-3x}{10x-4}\)

\(=\frac{2x-7-\left(5-3x\right)}{10x-4}\)

\(=\frac{2x-7-5+3x}{10x-4}\)

\(=\frac{5x-12}{10x-4}\)

8 tháng 1 2017

\(\frac{x-1}{x^2-9x+20}+\frac{2x-2}{x^2-6x+8}+\frac{3x-3}{x^2-x-2}+\frac{4x-4}{x^2+6x+5}=0\)

\(\Leftrightarrow\frac{x-1}{\left(x-5\right)\left(x-4\right)}+\frac{2\left(x-1\right)}{\left(x-4\right)\left(x-2\right)}+\frac{3\left(x-1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{4\left(x-1\right)}{\left(x+1\right)\left(x+5\right)}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{10}{x^2-25}\right)=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)  

PS: Điều kiện xác đinh bạn tự làm nhé 

7 tháng 1 2017

từ đề\(\Leftrightarrow\frac{x-1}{x\left(x-4\right)-5\left(x-4\right)}+\frac{2x-2}{x\left(x-2\right)-4\left(x-2\right)}+\frac{3x-3}{x\left(x+1\right)-2\left(x+1\right)}+\frac{4x-4}{x\left(x+1\right)+5\left(x+5\right)}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{\left(x-4\right)\left(x-5\right)}+\frac{2}{\left(x-2\right)\left(x-4\right)}+\frac{3}{\left(x-2\right)\left(x+1\right)}+\frac{4}{\left(x+1\right)\left(x+5\right)}=0\right)\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{x-4}-\frac{1}{x-5}+\frac{1}{x-2}-\frac{1}{x-4}+\frac{1}{x-2}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x-5}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{2}{x-2}-\frac{2}{x-5}\right)=0\)\(\frac{2}{x-2}-\frac{2}{x-5}\)luôn khác 0 nên x-1=0 nên x=1.

Điều kiện xác định : x khác 4,5,2,-1. Do đó x=1 thỏa mãn. Vậy x=1

15 tháng 3 2020

1,\(\frac{3}{2x+6}-\frac{x-6}{x\left(2x+6\right)}\)

=\(\frac{3x}{x\left(2x+6\right)}+\frac{x-6}{x\left(2x+6\right)}\)

=\(\frac{3x+x-6}{x\left(2x+6\right)}\)=\(\frac{4x-6}{x\left(2x+6\right)}=\frac{2\left(2x-3\right)}{x\left(2x+6\right)}\)

15 tháng 3 2020

2, \(\frac{1}{1-x}-\frac{2x}{1-x^2}\)=\(\frac{1+x}{\left(1-x\right)\left(1+x\right)}+\frac{2x}{\left(1-x\right)\left(1+x\right)}\)=\(\frac{1+x+2x}{\left(1-x\right)\left(1+x\right)}=\frac{3x+1}{\left(1-x\right)\left(1+x\right)}\)

21 tháng 7 2016

a.\(\frac{3x-1}{3x+1}+\frac{x-3}{x+3}=2\)

\(\frac{\left(3x-1\right)\left(x+3\right)+\left(3x+1\right)\left(x-3\right)}{\left(3x+1\right)\left(x+3\right)}=\frac{3x^2+8x-3+3x^2-8x-3}{\left(3x+1\right)\left(x+3\right)}=\frac{6x^2-6}{\left(3x+1\right)\left(x+3\right)}=2\)

\(6x^2-6=2\left(3x^2+10x+3\right)\)

\(6x^2-6=6x^2+20x+6\)

-20x-12=0

x=\(\frac{-3}{5}\)

 

22 tháng 4 2020

Bài làm

a) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x-4}\)

\(\Leftrightarrow\frac{3x+2}{3x-2}-\frac{6}{3x+2}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Leftrightarrow\frac{(3x+2)\left(3x+2\right)}{(3x-2)\left(3x+2\right)}-\frac{6\left(3x-2\right)}{(3x+2)\left(3x-2\right)}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Rightarrow\left(3x+2\right)^2-\left(18x-12\right)=9x^2\)

\(\Leftrightarrow9x^2+12x+4-18x+12x-9x^2=0\)

\(\Leftrightarrow6x+4=0\)

\(\Leftrightarrow x=-\frac{4}{6}\)

\(\Leftrightarrow x=-\frac{2}{3}\)

Vậy x = -2/3 là nghiệm.

23 tháng 4 2020

@Tao Ngu :))@ 9x-4 không tách thành (3x+4)(3x-4) được đâu bạn. Chỗ đó phải là: 9x2-4

Bài thiếu đkxđ của x \(\hept{\begin{cases}3x-2\ne0\\2+3x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}3x\ne2\\3x\ne-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne\frac{2}{3}\\x\ne\frac{-2}{3}\end{cases}\Leftrightarrow}x\ne\pm\frac{2}{3}}\)

7 tháng 5 2020

\(4x^4+4x^3+x^2+3x\ge0\)

\(4x^4+4x^2+1-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)\sqrt{\left(x^2-x+1\right)\left(2x^2+1\right)+2x^4+6x^3-2x^3+4x-1}\)

\(\Leftrightarrow\left(2x^2+1\right)^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)\sqrt{\left(x^2-x+1\right)\left(2x^2+1\right)+2x^4+6x^3-2x^3+4x-1}\)

\(2x^2+1=u;\sqrt{4x^4+4x^3+x^2+3x}=v\left(u>0;v>0\right)\)

\(\hept{\begin{cases}u^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)v\\v^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)u\end{cases}\Rightarrow u^2-v^2=\left(x^2-x+1\right)\left(v-u\right)\Leftrightarrow\orbr{\begin{cases}u=v\\u+v+x^2-x+1=0\end{cases}}}\)

  • \(u+v+x^2-x+1=0\Leftrightarrow u+v+\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)
  • \(u=v\Leftrightarrow4x^4+4x^2+1=4x^4+4x^3+x^2+3x\Leftrightarrow\left(x-1\right)^3=-3x^3\Leftrightarrow x-1=-x\sqrt[3]{3}\Leftrightarrow x=\frac{1}{1+\sqrt[3]{3}}\)Đối chiếu điều kiện ta thu được nghiệm duy nhất \(x=\frac{1}{1+\sqrt[3]{3}}\)
11 tháng 12 2019

a)\(\frac{4x+1}{3x}\)+\(\frac{2x-3}{6x}\)=\(\frac{2\left(4x+1\right)}{2.3x}\)+\(\frac{2x-3}{6x}\)=\(\frac{8x+2}{6x}\)+\(\frac{2x-3}{6x}\)=\(\frac{8x+2+2x-3}{6x}\)=\(\frac{10x-1}{6x}\)

b)\(\frac{x^2-y^2}{6x^2y^2}\):\(\frac{x+y}{3xy}\)=\(\frac{\left(x+y\right)\left(x-y\right)}{6x^2y^2}\) . \(\frac{3xy}{x+y}\)=\(\frac{\left(x+y\right)\left(x-y\right)3xy}{6x^2y^2\left(x+y\right)}\)=\(\frac{x-y}{2xy}\)