Bài 1: Tìm x,y
Cho x,y tỉ lệ với 5 và 3 và x mũ 2 trừ y mũ 2 bằng 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số mũ của x là m và số mũ của y là n
Ta có: \(\frac{m}{2}=\frac{n}{\frac{3}{2}}\Rightarrow\frac{m}{4}=\frac{n}{3}\)
và m - n = 1
Áp dụng dãy tỉ số bằng nhau ta có: \(\frac{m}{4}=\frac{n}{3}=\frac{m-n}{4-3}=1\)
=> m = 4 và n = 3
=> Đơn thức có dạng: \(ax^4y^3\)
Theo bài ra: \(a.2^4.\left(-3\right)^3=1296\)=> a = -3
Vậy đơn thức cần tìm là: \(-3x^4y^3\)
\(x^2-y^2=1\)
Ta có : \(\left(\frac{x}{5}\right)^2=\left(\frac{y}{4}\right)^2\)
\(=>\frac{x^2}{25}=\frac{y^2}{16}\)
A/d dãy ............
\(\frac{x^2-y^2}{25-16}=\frac{1}{9}=>\frac{x}{5}=\frac{y}{4}=\frac{1}{3}\)
\(=>\frac{x}{5}=\frac{1}{3}=>x=\frac{5}{3}\)
\(=>\frac{y}{4}=\frac{1}{3}=>x=\frac{4}{3}\)
\(\frac{x}{5}=\frac{y}{4}\)nên \(\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2-y^2}{25-16}=\frac{1}{9}\)=> \(\frac{x}{5}=\sqrt{\frac{1}{9}};-\sqrt{\frac{1}{9}}=\frac{1}{3};\frac{-1}{3}\)
=> x = \(\frac{1}{3}.5;\frac{-1}{3}.5=\frac{5}{3};\frac{-5}{3}\)
`@` `\text {Ans}`
`\downarrow`
`x/3=y/4` và `x^2+y^2=100`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x^2+y^2}{3^2+4^2}=\dfrac{100}{25}=4\)
`=>`\(\dfrac{x}{3}=\dfrac{y}{4}=2\left(2^2=4\right)\) (đoạn này phải đổi đúng kq ra là 2, vì 4 là kết quả của tử và mẫu khi bình phương)
`=>`\(\left\{{}\begin{matrix}x=2\cdot3=6\\y=2\cdot4=8\end{matrix}\right.\)
Vậy, `x=6; y=8.`
Xem lại bài? Nếu chọn \(4\) là kết quả gốc thì bình phương phải là \(16\)? Vậy \(16\) đâu?