|x+2|x-1/2||=2
Ai giải hộ với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2x}{3}-\dfrac{1}{3}=3x-2x+2\Leftrightarrow\dfrac{2x-1}{3}=x+2\)
\(\Rightarrow2x-1=3x+6\Leftrightarrow x=-7\)
\(\dfrac{2}{3}x-\dfrac{1}{3}=3x-2\left(x-1\right)\)
\(\Rightarrow\dfrac{2}{3}x-\dfrac{1}{3}=3x-2x+2\)
\(\Rightarrow3x-2x-\dfrac{2}{3}x=-\dfrac{1}{3}-2\)
\(\Rightarrow\dfrac{1}{3}x=-\dfrac{7}{3}\Rightarrow x=-7\)
\(x^2+2\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2=0\)
\(\Rightarrow x^2+2\left(x^2+2x+1\right)+3\left(x^2+4+4x\right)+4\left(x^2+6x+9\right)=0\)
\(\Rightarrow x^2+2x^2+4x+2+3x^2+12+12x+4x^2+24x+36=0\)
\(\Rightarrow10x^2+40x+50=0\)
\(\Rightarrow10\left(x^2+4x+5\right)=0\)
\(\Rightarrow x^2+4x+5=0\)
\(\Rightarrow\left(x^2+4x+2\right)+3=0\)
\(\Rightarrow\left(x+2\right)^2=-3\)
Mà \(\left(x+2\right)^2\ge0\)với mọi \(x\)
Vậy...
`(x+1)(x+3)=2x^2-2`
`<=>x^2+x+3x+3=2x^2-2`
`<=>x^2-4x-5=0`
`<=>x^2-5x+x-5=0`
`<=>x(x-5)+(x-5)=0`
`<=>(x-5)(x+1)=0`
`<=>` $\left[ \begin{array}{l}x=5\\x=-1\end{array} \right.$
Vậy `S={5,-1}`
Ta có: \(\left(x+1\right)\left(x+3\right)=2x^2-2\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2x^2+2=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x+3-2\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3-2x+2\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(5-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\5-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
Vậy: S={-3;5}
\(\left(x-2\right)\left(x-3\right)=\left(x-2\right)\left(x+1\right)\)
\(\Leftrightarrow x^2-5x+6=x^2-x-2\)
\(\Leftrightarrow-4x+8=0\)
\(\Leftrightarrow x=2\)
Vậy ...
ĐKXĐ: \(x\ge\frac{1}{2}\)
Chắc pt là thế này:
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=3\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=3\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=3\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|=3\)
- Nếu \(\sqrt{x-1}-1\ge0\Leftrightarrow x\ge2\)
\(\Leftrightarrow\sqrt{x-1}+1+\sqrt{x-1}-1=3\)
\(\Leftrightarrow\sqrt{x-1}=\frac{3}{2}\Rightarrow x=\frac{13}{4}\) (t/m)
- Nếu \(\frac{1}{2}\le x< 2\)
\(\Leftrightarrow\sqrt{x-1}+1+1-\sqrt{x-1}=3\Leftrightarrow2=3\) (vô lý)
Vậy pt có nghiệm duy nhất \(x=\frac{13}{4}\)
ĐKXĐ: \(x\ne\left\{-3;-2;-1;0\right\}\)
\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}=\dfrac{x}{x\left(x+3\right)}\)
\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}=\dfrac{x}{x\left(x+3\right)}\)
\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{x}{x\left(x+3\right)}\)
\(\Leftrightarrow\dfrac{3}{x\left(x+3\right)}=\dfrac{x}{x\left(x+3\right)}\)
\(\Leftrightarrow x=3\)
Ta có |x + 2|x - 1/2|| = 2
=> \(\orbr{\begin{cases}x+2\left|x-\frac{1}{2}\right|=2\\x+2\left|x-\frac{1}{2}\right|=-2\end{cases}}\Rightarrow\orbr{\begin{cases}2\left|x-\frac{1}{2}\right|=2-x\\2\left|x-\frac{1}{2}\right|=-2-x\end{cases}}\)
Nếu 2|x - 1/2| = 2 - x (1)
ĐKXĐ \(2-x\ge0\Rightarrow x\le2\)
Khi đó (1) <=> 2(x - 1/2) = 2 - x
=> 2x - 1 = 2 - x
=> 2x + x = 1 + 2
=> 3x = 3
=> x = 1 (tm)
Nếu 2|x - 1/2| = -2 - x (2)
ĐKXĐ : \(-2-x\ge0\Rightarrow x\le-2\)
Khi đó (2) <=> 2(x - 1/2) = -2 - x
=> 2x - 1 = -2 - x
=> 3x = -1
=> x = -1/3 (loại)
Vậy x = 1
\(\left|x+2\right|x-\frac{1}{2}=2\)
\(\Rightarrow\left|x+2\right|x=\frac{5}{2}\)
\(\Rightarrow\left|x+2\right|=\frac{5}{2}:x=\frac{5}{2x}\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=\frac{5}{2x}\\x+2=-\frac{5}{2x}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5-4x}{2x}\\x=\frac{-5-4x}{2x}\end{cases}}\)
Tới đây thì chịu:)