tìm x,y biết : 25-y^2=8(x-2009)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(8\left(x-2009\right)^2\) chẵn nên \(25-y^2\) chẵn
Mà \(25\) lẻ nên \(y^2\) lẻ
Và \(25-y^2=8\left(x-2009\right)^2\ge0\Leftrightarrow y^2\le25\)
\(\Leftrightarrow y^2\in\left\{1;9;25\right\}\Leftrightarrow y\in\left\{1;3;5\right\}\left(y\in N\right)\)
\(\forall y=1\Leftrightarrow8\left(x-2009\right)^2=24\Leftrightarrow\left(x-2009\right)^2=3\left(loại\right)\\ \forall y=3\Leftrightarrow8\left(x-2009\right)^2=16\Leftrightarrow\left(x-2009\right)^2=2\left(loại\right)\\ \forall y=5\Leftrightarrow8\left(x-2009\right)^2=0\Leftrightarrow\left(x-2009\right)^2=0\Leftrightarrow x=2009\left(nhận\right)\)
Vậy \(\left(x;y\right)=\left(2009;5\right)\)
a, x ⋮ 25 và x < 100
Vì x ⋮ 25
nên x ∈ B(25) = { 0;25;50;75;100;... }
Mà x < 100
=> x = { 0 ; 25 ; 50 ; 75 }
b,5x + 3x = 3^6 : 3^3 .4 + 12
x.( 5 +3 )= 3^3 . 4 + 12
x . 8 = 27 . 4 + 12
x . 8 = 108 + 12
x . 8 = 120
x = 120 : 8
x = 15
~HT~
\(25-y^2-8.\left(x-2009\right)^2\)
ta thấy vế phải \(8.\left(x-2009\right)^2\ge0\) \(\forall x\)
\(\Rightarrow VT:25-y^2\ge0\)
\(\Rightarrow0\le y^2\le25\)
\(\Rightarrow y^2\in\left\{0;1;4;9;16;25\right\}\)
mà \(8.\left(x-2009\right)^2\) chẵn\(\Rightarrow25-y^2\)chẵn \(\Rightarrow y^2lẻ\)
\(\Rightarrow y^2\in\left\{1;9;25\right\}\)
\(\Rightarrow y\in\left\{1;3;5\right\}\) (do \(y\in N\))
\(TH1:y=1\)
\(\Rightarrow8.\left(x-2009\right)^2=24\)
\(\Leftrightarrow\left(x-2009\right)^2=3\left(koTM\right)\)(do \(x\in N\))
\(TH2:y=3\)
\(\Rightarrow8.\left(x-2009\right)^2=16\)
\(\left(x-2009\right)^2=2\left(koTM\right)\)(do \(x\in N\))
\(TH3:y=25\)
\(\Rightarrow8.\left(x-2009\right)^2=0\)
\(\Rightarrow\left(x-2009\right)^2=0\Rightarrow x=2009\left(TM\right)\)
vậy cặp số \(\left(x,y\right)\) thỏa mãn \(25-y^2-8.\left(x-2009\right)^2\) là \(\left(2009;25\right)\)
Ta có
25 - y^2 = 8(x-2009)^2
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0
Mặt khác do 8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn
Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe)
Do vậy chỉ tồn tại các giá trị sau
y^2 = 1, y^2 = 9, y^2 = 25
y^2 = 1; (x-2009)^2 = 3 (loại)
y^2 = 9; (x-2009)^2 = 2 (loại)
y^2 = 25; (x-2009)^2 = 0; x = 2009
Vậy pt có nghiệm nguyên (2009 , -5) ; (2009 , 5)
Ta có
25 - y^2 = 8(x-2009)^2
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0
Mặt khác do
8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn
Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe)
Do vậy chỉ tồn tại các giá trị sau
y^2 = 1, y^2 = 9, y^2 = 25
y^2 = 1; (x-2009)^2 = 3 (loại)
y^2 = 9; (x-2009)^2 = 2 (loại)
y^2 = 25; (x-2009)^2 = 0; x = 2009
Vậy pt có nghiệm nguyên (2009 , -5) ; (2009 , 5)