Cho 2 số dương x và y thỏa mãn: x+y <1
Tìm GTNN của biểu thức A= \(\frac{1}{x_{ }^2+y^2}+\frac{501}{xy}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).
\(A=x^4+y^4\)
\(=\left(x^4+2x^2y^2+y^4\right)-2x^2y^2\)
\(=\left(x^2+y^2\right)^2-2\left(xy\right)^2\) (*)
Thay xy=5 và x2+y2=18 vào (*), ta có
\(A=18^2-2.5^2\)
\(=324-50\)
\(=274\)
Vậy A=274
Đáp án C
Ta có
Khi đó
Vậy giá trị nhỏ nhất của biểu thức P là 3 + 2 2
Đề đúng ó bạn, ko có sai đâu
Với \(x+y< 1\) thì biểu thức ko tồn tại min
Nó chỉ tồn tại min khi \(x+y\le1\)