K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2020

Đặt x2 + x + 1 = k2

<=> 4x2 + 4x + 4 = 4k2

<=> 4k2 - 4x2 - 4x + 1 - 5 = 0

<=> (2k)2 - (2x -1)2 = 5

<=> (2k + 2x -1)(2k - 2x - 1) = 5

Vì x, k nguyên nên ta có các trường hợp:

\(TH_1\hept{\begin{cases}2k+2x-1=5\\2k-2x-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\k=2\end{cases}}}\)

\(TH_2\hept{\begin{cases}2k+2x-1=1\\2k-2x-1=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\k=2\end{cases}}}\)

\(TH_3\hept{\begin{cases}2k+2x-1=-1\\2k-2x-1=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\k=-1\end{cases}}}\)

\(TH_4\hept{\begin{cases}2k+2x-1=-5\\2k-2x-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\k=-1\end{cases}}}\)

Vậy các số nguyên x là ( -1; 1 )

25 tháng 3 2022

-Đặt \(x^2+8x=a^2\)

\(\Rightarrow x^2+8x+16=a^2+16\)

\(\Rightarrow\left(x+4\right)^2-a^2=16\)

\(\Rightarrow\left(x+a+4\right)\left(x-a+4\right)=16\)

-Vì \(x,a\) là các số nguyên dương \(\Rightarrow x+a+4>x-a+4\) và \(16=16.1=8.2=4.4\)

\(\Rightarrow x+a+4=16;x-a+4=1\Rightarrow x=\dfrac{9}{2};a=\dfrac{15}{2}\left(loại\right)\)

\(x+a+4=8;x-a+4=2\Rightarrow x=1;a=3\left(nhận\right)\)

\(x+a+4=4;x-a+4=4\Rightarrow x=a=0\left(nhận\right)\)

-Vậy \(x\in\left\{0;1\right\}\)

 

 

 

7 tháng 8 2020

cách j thế ạ 

23 tháng 4 2019

Cách này sử dụng các hằng đặng thức đáng nhớ:

\(A^2+2AB+B^2=\left(A+B\right)^2\)

và \(A^2-B^2=\left(A-B\right)\left(A+B\right)\)

Em tìm hiểu nhé!

Đặt : \(x^2-x-1=a^2\) nhân 4 vào 2 vế ta có:

\(4x^2+4x-4=4a^2\Leftrightarrow4x^2+4x+1-5=\left(2a\right)^2\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(2a\right)^2=5\)

<=> \(\left(2x+1-2a\right)\left(2x+1+2a\right)=5\)

Vì x, a nguyên nên mình sẽ có các trường hợp

TH1: \(\hept{\begin{cases}2x+1-2a=5\\2x+1+2a=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\a=-1\end{cases}}}\)thay vào thỏa mãn

TH2: \(\hept{\begin{cases}2x+1-2a=-5\\2x+1+2a=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\a=1\end{cases}}}\)thử vào thỏa mãn

TH3: \(\hept{\begin{cases}2x+1-2a=-1\\2x+1+2a=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\a=-1\end{cases}}}\)thử vào thỏa mãn

TH4: .....làm tiếp nhé

kết luận x=-2 hoặc x=1

24 tháng 4 2019

số phương là số gì ?

31 tháng 1

Giả sử \(x^3+x^2+2025\) là số chính phương nhỏ hơn 10000. Ta có phương trình:
\(x^3+x^2+2025 =k^2(k \in N,k^2<10000 \Leftrightarrow k<100)\)
\(\Leftrightarrow \)\(2025=k^2-x^2(x+1)\)
\(\Leftrightarrow \)\(2025=(k-x\sqrt{x+1})(k+x\sqrt{x+1})\)
Mà \(k-x\sqrt{x+1} < k+x\sqrt{x+1}< 100\)(Vì \(k < 100\))
\(\Rightarrow \)\(\left[\begin{array}{} \begin{cases} k+x\sqrt{x+1}=81\\ k-x\sqrt{x+1}=25 \end{cases}\\ \begin{cases} k+x\sqrt{x+1}=75\\ k-x\sqrt{x+1}=27 \end{cases}\\ \end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{} \begin{cases} 2k=106\\ k-x\sqrt{x+1}=25 \end{cases}\\ \begin{cases} 2k=102\\ k-x\sqrt{x+1}=27 \end{cases}\\ \end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{} \begin{cases} k=53\\ 53-x\sqrt{x+1}=25 \end{cases}\\ \begin{cases} k=51\\ 51-x\sqrt{x+1}=27 \end{cases}\\ \end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{} \begin{cases} k=53\\ x\sqrt{x+1}=28 \end{cases}\\ \begin{cases} k=51\\ x\sqrt{x+1}=24 \end{cases}\\ \end{array} \right.\)

\(\Leftrightarrow\)\(\left[\begin{array}{} \begin{cases} k=53\\ x^3+x^2-784=0 \end{cases}\\ \begin{cases} k=51\\ x^3+x^2-576=0 \end{cases}\\ \end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{} \begin{cases} k=53\\ x^3+x^2-784=0(PTVN) \end{cases}\\ \begin{cases} k=51\\ x^3-8x^2+9x^2-72x+72x-576=0 \end{cases}\\ \end{array} \right.\)
\(\Leftrightarrow\)\(\begin{cases} k=51\\ (x-8)(x^2+9x+72)=0 \end{cases}\)
\(\Leftrightarrow\)\(\begin{cases} k=51(t/m)\\ \left[\begin{array}{} x=8(t/m)\\ (x+\frac{9}{2})^2+\frac{207}{4}=0(PTVN) \end{array} \right. \end{cases}\)
Vậy chỉ có giá trị \(x=8\) thỏa mãn yêu cầu bài toán.
P/s: Cái c/m vô nghiệm kia mình không biết làm. Chỉ biết bấm máy tính không ra nghiệm nguyên

12 tháng 7 2018

Đáp án B

29 tháng 9 2020

Đặt: \(t^2=x^2+x+6\)

=> \(4t^2=4x^2+4x+24=\left(2x+1\right)^2+23\)

=> \(4t^2-\left(2x+1\right)^2=23\)

<=> \(\left(2t-2x-1\right)\left(2t+2x+1\right)=23\)

Chia các trường hợp: => x và t