K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2020

a, \(=\left(2x^2\right)^2+2.9.2x^2+9^2-36x^2\)

\(=\left(2x^2+9\right)^2-\left(6x\right)^2\)

\(=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\)

b, \(=x^4+2x^2+1-2x^2\)

\(=\left(x^2+1\right)^2-\left(x\sqrt{2}\right)^2\)

\(=\left(x^2+x\sqrt{2}+1\right)\left(x^2-x\sqrt{2}+1\right)\)

c, \(=\left(8x^2\right)^2+8x^2.2.y^2+y^4-16x^2y^2\)

\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)

\(=\left(8x^2-4xy+y^2\right)\left(8x^2+4xy+y^2\right)\)

d, \(=x^2+x-6=0\)

\(=x^2-2x+3x-6\)

\(=x\left(x-2\right)+3\left(x-2\right)\)

\(=\left(x-2\right)\left(x+3\right)\)

Bài 3:

a) Ta có: \(4x^4+81\)

\(=4x^4+36x^2+81-36x^2\)

\(=\left(2x^2+9\right)^2-\left(6x\right)^2\)

\(=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\)

c) Ta có: \(64x^4+y^4\)

\(=\left(8x^2\right)^2+16x^2y^2+y^4-16x^2y^2\)

\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)

\(=\left(8x^2-4xy+y^2\right)\left(8x^2+4xy+y^2\right)\)

29 tháng 6 2019

a) \(x^2+12x+35\)

\(=x^2+5x+7x+35\)

\(=\left(x^2+5x\right)+\left(7x+35\right)\)

\(=x\left(x+5\right)+7\left(x+5\right)\)

\(=\left(x+5\right)\left(x+7\right)\)

b)\(x^2-x-56\)

\(=x^2+7x-8x-56\)

\(=\left(x^2+7x\right)-\left(8x+56\right)\)

\(=x\left(x+7\right)-8\left(x+7\right)\)

\(=\left(x+7\right)\left(x-8\right)\)

c)\(5x^2-x-4\)

\(=5x^2-5x+4x-4\)

\(=\left(5x^2-5x\right)+\left(4x-4\right)\)

\(=5x\left(x-1\right)+4\left(x-1\right)\)

\(=\left(x-1\right)\left(5x+4\right)\)

29 tháng 6 2019

TL:

a)\(x^2+5x+7x+35\) 

 =\(x\left(x+5\right)+7\left(x+5\right)\) 

=\(\left(x+7\right)\left(x+5\right)\) 

b) \(x^2-x-56\)

  =\(x^2+7x-8x-56\) 

=\(x\left(x+7\right)-8\left(x+7\right)\) 

=\(\left(x-8\right)\left(x+7\right)\) 

d)\(4x^4+1=\left(2x^2\right)^2+4x^2+1-4x^2\) 

=\(\left(2x^2+1\right)^2-4x^2\) 

=\(\left(2x^2+1+4x\right)\left(2x^2+1-4x\right)\)

.......................(tự lm)

hc tốt

30 tháng 10 2016

(x - 4)(x2 + 4x + 16) - x(x2 - 6) = 2

x3 - 64 - x3 + 6x = 2

6x = 2 + 64

6x = 66

x = 66 : 6

x = 11

x3 - 27 + 3x(x - 3)

= (x - 3)(x2 + 3x + 9) + 3x(x - 3)

= (x - 3)(x2 + 3x + 9 + 3x)

= (x - 3)(x2 + 6x + 9)

= (x - 3)(x + 3)2

5x3 - 7x2 + 10x - 14

= 5x(x2 + 2) - 7(x2 + 2)

= (x2 + 2)(5x - 7)

30 tháng 10 2016

mk cám ơn nhiều ạ

16 tháng 8 2020

a/ \(x^4+16\)

\(=x^4+4x^2+16-4x^2\)

\(=\left(x^4+4x^2+16\right)-4x^2\)

\(=\left(x^2+4\right)^2-\left(2x\right)^2\)

\(=\left(x^2+4-2x\right)\left(x^2+4+2x\right)\)

b/ \(64x^4+y^4\)

\(=64x^4+y^4+16x^2y^2-16x^2y^2\)

\(=\left(64x^4+y^4+16x^2y^2\right)-16x^2y^2\)

\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)

\(=\left(y^2+8x^2-4xy\right)\left(8x^2+y^2-4xy\right)\)

\(x^4-x^3-x^2+1\)

\(\text{ Phân tích thành nhân tử}\)

\(\left(x-1\right)\left(x^3-x-1\right)\)

\(-x-y^2+x^2-y\)

\(\text{ Phân tích thành nhân tử}\)

\(\left(-\left(y-x+1\right)\right)\left(y+x\right)\)

\(x^2-y^2-x-y\)

\(\text{ Phân tích thành nhân tử}\)

\(\left(-\left(y-x+1\right)\right)\left(y+x\right)\)

\(x^2-y^2+4-4x\)

\(\text{ Phân tích thành nhân tử}\)

\(\left(-\left(y-x+2\right)\right)\left(y-x+2\right)\)

17 tháng 10 2016

a)\(\frac{1}{64}x^6-125y^3=\left(\frac{1}{4}x^2\right)^3-\left(5y\right)^3\)\(=\left(\frac{1}{4}x^2-5y\right)\left(\frac{1}{16}x^4+\frac{5}{4}x^2y+25y^2\right)\)

b)\(x^6+1=\left(x^2\right)^3+1^3=\left(x^2+1\right)\left(x^4+x^2+1\right)\)

c)\(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3+y^3\right)\left(x^3-y^3\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)

d)\(x^9+1=\left(x^3\right)^3+1=\left(x^3+1\right)\left(x^6-x^3+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)\left(x^6-x^3+1\right)\)

\(=x^3\left(x+1\right)\left(x^2-x+1\right)\left(x^2-x+1\right)\)

a: =xy(x^2-4xy^2+4y^4)

=xy(x-2y^2)^2

b:=(x^3-y)^2

c: =(a^2-b^2)(a^2+b^2)

=(a^2+b^2)(a-b)(a+b)

d: 64x^6-27y^6

=(4x^2-3y^2)(16x^4+12x^2y^2+9y^4)

e: =(2x)^3+(3y)^3

=(2x+3y)(4x^2-6xy+9y^2)