Tìm các góc của một tam giacs biết các góc đó tỉ lệ với 2,3,4 và tổng 3 góc trong một tam giacs bằng 180 độ
Giups mik nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ba góc của tam giác là a,b,c
Theo bài ra,ta có :
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\) và a + b + c = 180
Theo dãy tỉ số bằng nhau,ta có :
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}=\frac{180}{6}=30\)
=> a = 1.30 = 30o
b = 2.30 = 60o
c = 3.30 = 90o
Chúc bạn học tốt
Gọi 3 góc của tam giác là A ; B ; C
=> \(\frac{A}{1}=\frac{B}{2}=\frac{C}{3}\) ; A + B + C = 180 độ
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{A}{1}=\frac{B}{2}=\frac{C}{3}=\frac{A+B+C}{1+2+3}=\frac{180}{6}=30\)
\(\Rightarrow A=30\cdot1=30\)
\(\Rightarrow B=30\cdot2=60\)
\(\Rightarrow C=30\cdot3=90\)
Vậy ...
Gọi số đo các cạnh của tám giác lần lượt là a, b, c. Theo đề bài ta có: a, b, c tỉ lệ với 1, 2, 3 và a + b + c = 180
Theo tính chất của dãy tỉ số = nhau:
\(\frac{a}{1}\)= \(\frac{b}{2}\)=\(\frac{c}{3}\)= \(\frac{a+b+c}{1+2+3}\)\(\frac{180}{6}\)= 30
-> \(\frac{a}{1}\)= 30 => a = 30
-> \(\frac{b}{2}\)= 30 => b = 60
-> \(\frac{c}{3}\)= 30 => c = 90
Vậy số đo các cạnh của tam giác là 30 ; 60 ; 90
Mình làm bài 2 nhé :
Gọi các góc của tam giác lần lượt là a , b , c
Theo đề bài ta có :
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3};a+b+c=180\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}=\frac{180}{6}=30\)
\(\Rightarrow\)\(a=30.1=30\)
\(b=30.2=60\)
\(c=30.3=90\)
Vậy bạn tự kết luận nha
gọi a,b lần lượt là chiều dài , chiều rộng của tam giác (a,b > 0 )
ta có nữa chu vi hình chữ nhật là \(a+b=90:2=45\)
ta có \(a:b=2:3\Leftrightarrow\frac{a}{b}=\frac{2}{3}\Leftrightarrow\frac{a}{2}=\frac{b}{3}\)và a+b=45
theo tính chất dãy tỉ số bằng nhau có
\(\frac{a}{2}=\frac{b}{3}=\frac{a+b}{2+3}=\frac{45}{5}=9\)
do đó
\(\hept{\begin{cases}\frac{a}{2}=9\Leftrightarrow a=2.9=18\\\frac{b}{3}=9\Leftrightarrow b=3.9=27\end{cases}}\)
vậy chiều dài tam giác là 18 chiều rộng tam giác lf 27
Ta có : tổng các góc = 180 o
Tổng số phần của các góc là :
2 + 3 + 4 = 9 phần
Số đo của góc thứ nhất là :
\(180:9\times2=40^o\)
Số đo của góc thứ 2 là :
\(180:9\times3=60\)
Số đo của góc thứ 3 là :
\(180:9\times4=80^o\)
Đáp số : .................
gọi số đo 3 góc là a,b,c(a,b,c>0)
Áp dụng t/c dtsbn ta có:
\(\dfrac{a}{15}=\dfrac{b}{6}=\dfrac{c}{9}=\dfrac{a+b+c}{15+6+9}=\dfrac{180^o}{30}=6^o\)
\(\dfrac{a}{15}=6^o\Rightarrow a=90^o\\ \dfrac{b}{6}=6^o\Rightarrow b=36^o\\ \dfrac{c}{9}=6^o\Rightarrow c=54^o\)
Gọi 3 góc của tam giác là a,b,c(độ;a>b>c>0)
Áp dụng tc dtsbn:
\(\dfrac{a}{15}=\dfrac{b}{9}=\dfrac{c}{6}=\dfrac{a+b+c}{15+6+9}=\dfrac{180}{30}=6\\ \Leftrightarrow\left\{{}\begin{matrix}a=90\\b=54\\c=36\end{matrix}\right.\)
Vậy ...
Theo đề bài ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) và \(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^o}{15}=12^o\)
\(\Rightarrow\widehat{A}=12^o.3=36^o\)
\(\widehat{B}=12^o.5=60^o\)
\(\widehat{C}=12^o.7=84^o\)
nếu số đo (độ) các góc của tam giác ABC là A , B , C (độ) thì theo điều kiện bài ra và tính chất của dãy tỉ số bằng nhau , ta có \(\dfrac{A}{3}=\dfrac{B}{5}=\dfrac{C}{7}=\dfrac{A+B+C}{3+5+7}=\dfrac{180}{15}=12\)
vậy : A = 3 . 12 = 36
B = 5 . 12 = 60
C = 7 . 12 = 84
=> A = 36 (độ) ; B = 60 (độ) ; C = 84 (độ)
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^0}{15}=12^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=36^0\\\widehat{B}=60^0\\\widehat{C}=84^0\end{matrix}\right.\)
Gọi các góc của tam giác đó là : a , b ,c lần lượt tỉ lệ với 2,3,4 và tổng 3 góc đó bằng 180 độ . Nên ta có :
\(\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\\a+b+c=180\end{cases}}\)
Áp dụng TC của dãy tỉ số bằng nhau , ta có :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{180}{9}=20\)
\(\Rightarrow\hept{\begin{cases}a=40\\b=60\\c=80\end{cases}}\)
Vậy .............
P/s : Lm ko đc đầy đủ cho lém . mn bỏ qua nhen
Gọi các góc của một tam giác lần lượt là a,b,c .
Vì các góc của tam giác tỉ lệ với 2,3,4 nên :
a.b.c = 2.3.4
=>\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và a + b + c = 180độ
Theo tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{180}{9}=20\)
Với \(\frac{a}{2}=20\Rightarrow a=40^0\)
Với \(\frac{b}{3}=20\Rightarrow b=60^0\)
Với \(\frac{c}{4}=20\Rightarrow c=80^0\)
Vậy các góc của một tam giác có số đo lần lượt là 40độ , 60độ , 80độ .
Học tốt