Chứng minh rằng :
a , với mọi x ,y thuộc Z thì [x+y]=[x]+[y]
b,với x thuộc Z , y thuộc Q thì [x+y]=x+[y]
*chú ý : [y] là phần nguyên của y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left|x+y\right|\ge0\)
\(\left|x\right|+\left|y\right|\ge0\)\(\Rightarrow\left|x+y\right|=\left|x\right|+\left|y\right|\)
(x/x+y+z)+(y/y+z+x)+(z/z+x+y)
=(x/x+y+z)+(y/x+y+z)+(z/x+y+z)
=x+y+z/x+y+z=A
=>A=1
Vậy A là số nguyên
Ta có:
A = ( -x + y - z) - ( y - x ) - ( x- z )
A = -x + y - z - y + x - x + z
A = ( -x + x ) + ( y - y ) - ( z - z )
A = 0 + 0 - 0 = 0
=> ĐPCM
Vậy giá trị của biểu thức A luôn dương
K ĐÚNG CHO MIK ĐÓ NHA MẤY CẬU !
Lời giải:
Do $x,y,z>0$ nên:
$A> \frac{x}{x+y+z}+\frac{y}{y+z+x}+\frac{z}{z+x+y}=\frac{x+y+z}{x+y+z}=1(*)$
Mặt khác:
$\frac{x}{x+y}-\frac{x+z}{x+y+z}=\frac{-yz}{(x+y)(x+y+z)}<0$ với mọi $x,y,z>0$
$\Rightarrow \frac{x}{x+y}< \frac{x+z}{x+y+z}(1)$
Hoàn toàn tương tự ta có:
$\frac{y}{y+z}< \frac{y+x}{y+z+x}(2)$
$\frac{z}{z+x}< \frac{z+y}{z+x+y}(3)$
Lấy $(1)+(2)+(3)$ ta thu được: $A< \frac{2(x+y+z)}{x+y+z}=2(**)$
Từ $(*); (**)\Rightarrow 1< A< 2$ nên $A$ không là số nguyên.
a) vì x,y \(\in\)Z \(\Rightarrow\)x + y \(\in\)Z
\(\Rightarrow\)[ x + y ] = x + y ( 1 )
[ x ] = x ; [ y ] = y
\(\Rightarrow\)[ x ] + [ y ] = x + y ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)[ x + y ] = [ x ] + [ y ]
b) Ta có : y = [ y ] + { y } trong đó [ y ] \(\in\)Z ; 0 \(\le\){ y } < 1
\(\Rightarrow\)[ x + y ] = [ x + [ y ] + { y } ] ( 1 )
x \(\in\)Z ; [ y ] \(\in\)Z ; x + [ y ] \(\in\)Z
Từ ( 1 ) \(\Rightarrow\)[ x + y ] = [ x + [ y ] ] = x + [ y ]
ta có (x+y)(x+2y)(x+3y)(x+4y)+y^4
=(x+y)(x+4y)(x+2y)(x+3y)+y^4
=(x^2+5xy+4y^2)(x^2+5xy+6y^2)+y^4
đặt x^2+5xy=a
<=>A=a(a+2y^2)+y^4
=a^2+2.a.y^2+y^4
=(a+y^2)^2
là scp