K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

a, \(\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(3\sqrt{2}-2\right)^2}\)

\(=\left|\sqrt{2}-1\right|+\left|3\sqrt{2}-2\right|\)

\(=\sqrt{2}-1+3\sqrt{2}-2=4\sqrt{2}-3\)

b, \(2\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2\sqrt{3}+1\right)^2}\)

\(=2\left|\sqrt{3}-1\right|-\left|2\sqrt{3}+1\right|\)

\(=2\sqrt{3}-2-2\sqrt{3}-1=-3\)

26 tháng 8 2021

c, \(4\sqrt{\left(2-\dfrac{\sqrt{3}}{2}\right)^2}-3\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=4\left|2-\dfrac{\sqrt{3}}{2}\right|-3\left|\sqrt{3}-1\right|\)

\(=8-2\sqrt{3}-3\sqrt{3}+3=11-5\sqrt{3}\)

9 tháng 12 2019

Dùng liên hợp.

pt <=> \(\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left(1+\sqrt{3}\right)\)

\(-3\left(x-1\right)\left(x-\sqrt{3}\right)\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}\right)\)

\(+2\left(x-1\right)\left(x-\sqrt{2}\right)\left(\sqrt{3}+1\right)\left(\sqrt{3}+\sqrt{2}\right)=3x-1\)

<=> \(\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left[\left(x-\sqrt{2}\right)\left(1+\sqrt{3}\right)-\left(x-1\right)\left(\sqrt{2}+\sqrt{3}\right)\right]\)

\(-2\left(x-1\right)\left(\sqrt{3}+\sqrt{2}\right)\left[\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)-\left(x-\sqrt{2}\right)\left(1+\sqrt{3}\right)\right]\)

\(=3x-1\)

<=> \(\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left(x+\sqrt{3}\right)\left(1-\sqrt{2}\right)\)

\(-2\left(x-1\right)\left(\sqrt{3}+\sqrt{2}\right)\left(x+1\right)\left(\sqrt{2}-\sqrt{3}\right)=3x-1\)

<=> \(3-x^2-2\left(1-x^2\right)=3x-1\)

<=> \(x^2-3x+2=0\) phương trình bậc 2.

Em làm tiếp nhé!

20 tháng 7 2016

từ dòng cuối là sai rồi bạn à

Bạn bỏ dòng cuối đi còn lại đúng rồi

Ở tử đặt nhân tử chung căn x chung  rồi lại đặt căn x +1 chung

Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra 

rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

 

21 tháng 7 2016

cảm ơn bạn nha ok

28 tháng 9 2023

\(1,=\left|1-\sqrt{2}\right|+\left|\sqrt{2}+3\right|\\ =1-\sqrt{2}+3+\sqrt{2}\\ =4\\ 2,=\left|\sqrt{3}-2\right|+\left|\sqrt{3}-1\right|\\ =\sqrt{3}-2+\sqrt{3}-1\\ =2\sqrt{3}-3\\ 3,=\left|\sqrt{5}-3\right|+\left|\sqrt{5}-2\right|\\ =\sqrt{5}-3+\sqrt{5}-2\\ =2\sqrt{5}-5\\ 4,=\left|3+\sqrt{2}\right|+\left|3-\sqrt{2}\right|\\ =3+\sqrt{2}+\sqrt{3}-\sqrt{2}\\ =3+\sqrt{3}\\ 5,=\left|2-\sqrt{3}\right|-\left|2+\sqrt{3}\right|\\ =2-\sqrt{3}-\left(2+\sqrt{3}\right)\\ =2-\sqrt{3}-2-\sqrt{3}\\ =-2\sqrt{3}\)

e) Ta có: \(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)

\(=\sqrt{2}+1-\sqrt{2}+1\)

=2

17 tháng 7 2018

a,( √6+2)(√3-√2)

<=> ( √2√3+2)(√3-√2)

<=> √2(√3+√2)(√3-√2)

<=> √2( (√3)2-(√2)2) = √2

b, (√3+1)2-2√3+4

<=> (√3)+2√3 +1 -2√3+4 =8

c, (1+√2-√3)(√2+√3)

<=>√2+√3+(√2)2+√6-√6-(√3)2

<=> √2+√3-1

d, √3(√2-√3)2-(√3+√2)

<=> √3( 2-2√6+3)-√3-√2

<=> 5√3-2√18-√3-√2

<=> 4√3-√2(√36-1)

<=> 4√3 - 3√2

e, (1+2√3-√2)(1+2√3+√2)

<=> (1+2√3)2-(√2)2

<=> (1+4√3+(2√3)2)-2

<=> 1+4√3+12-2= 11+4√3

g, (1-√3)2(1+2√3)2

<=>(1-2√3+3)(1+4√3+12)

<=>( 4-2√3)(13+4√3)

<=> 52+16√3-26√3-24

<=> -10√3+28