K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2015

4 ^39 + 4^40 +4^41

=4 ^38.4 + 4^38 .4^2+4^38.4^3

= 4^38 .(4 +16+64) 

= 4^38 .84

=> chia hết cho 42...

tick nha

29 tháng 7 2023

\(4^{39}+4^{40}+4^{41}=4^{38}.\left(4+4^2+4^3\right)=4^{38}.84⋮28\left(Vì:84⋮28\right)\)

29 tháng 7 2023

cảm ơn

 

30 tháng 1 2019

a) 52 439 ; 52 440 ; 52 441 ; 52 442 ; 52 443 ; 52 444 ; 52 445.

b) 46 754 ; 46 755 ; 46 756 ; 46 757 ; 46 758 ; 46 759 ; 46 760.

c) 24 976 ; 24 977 ; 24 978 ; 24 979 ; 24 980 ; 24 981 ; 24 982.

28 tháng 11 2016

Do \(5\left(a+b\right)^2+ab\)chia hết cho 441 = 212 nên

\(4\left(5\left(a+b\right)^2+ab\right)=20\left(a+b\right)^2+4ab\)chia hết cho 212

Ta lại có

\(20\left(a+b\right)^2+4ab=20\left(a+b\right)^2+\left(a+b\right)^2-\left(a-b\right)^2\)

\(=21\left(a+b\right)^2-\left(a-b\right)^2\)

Vì 21(a+b)2 chia hết cho 21 nên (a - b)2 chia hết cho 21

Ta thấy rằng 21 = 3.7 (3,7 là hai số nguyên tố)

Nên (a - b)2 chia hết cho 3 và 7

=> (a - b) chia hết cho 3 và 7 (vì 3, 7 là số nguyên tố)

=> (a - b) chia hết cho 21

=> (a - b)2 chia hết cho 212 

Kết hợp với \(21\left(a+b\right)^2-\left(a-b\right)^2\)chia hết cho 212

=> 21(a + b)2 chia hết cho 212

=> (a + b) chia hết cho 21

Chứng minh tương tự ta se suy ra được (a + b)2 chia hết cho 212

=> 5(a + b)2 chia hết cho 212

=> ab chia hết cho 212 = 441

18 tháng 7 2016

1/ Do trong 6 số nguyên liên tiếp bất kì luôn có 3 số chẵn gồm 2 số chia hết cho 2 và ít nhất 1 số chia hết cho 4 nên tích 6 số nguyên liên tiếp luôn chia hết cho 16 (1)

Do trong 6 số nguyên liên tiếp luôn có 2 số chia hết cho 3 => tích 6 số nguyên liên tiếp luôn chia hết cho 9 (2)

Do trong 6 số nguyên liên tiếp luôn có ít nhất 1 số chia hết cho 5 => tích 6 số nguyên liên tiếp luôn chia hết cho 5 (3)

Từ (1); (2); (3) do 16; 9; 5 nguyên tố cùng nhau từng đôi một nên tích 6 số nguyên liên tiếp luôn chia hết cho 16 x 9 x 5 hay 720 (đpcm)

2/ Do trong 3 số chẵn liên tiếp luôn có 2 số chia hết cho 1 và ít nhất 1 số chia hết cho 4 => tích của chúng chia hết cho 16

Do trong 3 số chẵn liên tiếp luôn có 1 số chia hết cho 3 nên tích của chúng chia hết cho 3

=> tích 3 số chẵn liên tiếp chia hết cho 2; 4; 6; 8; 12; 16; 24; 48

28 tháng 10 2016

ĐK: a;b ϵ Z

Xét hiệu: (a3 + b3) - (a + b)

= (a3 - a) + (b3 - b)

= a.(a2 - 1) + b.(b2 - 1)

= a.(a - 1).(a + 1) + b.(b - 1).(b + 1)

Dễ thấy: a.(a - 1).(a + 1) và b.(b - 1).(b + 1) đều chia hết cho 2 và 3 vì đều là tích 3 số nguyên liên tiếp

Mà (2;3)=1 => a.(a - 1).(a + 1) + b.(b - 1).(b + 1) đều chia hết cho 6

=> (a3 + b3) - (a + b) chia hết cho 6

  • Nếu a3 + b3 chia hết cho 6, do (a3 + b3) - (a + b) chia hết cho 6

=> a + b chia hết cho 6 (1)

  • Nếu a + b chia hết cho 6, do (a3 + b3) - (a + b) chia hết cho 6

=> a3 + b3 chia hết cho 6 (2)

Từ (1) và (2) => đpcm

29 tháng 10 2016

Thank nhé !!!!!!

31 tháng 10 2015

Ta có:

\(2^{2014}-2^{2012}=2^{2012}.\left(4-1\right)=2^{2011}.2.3=2^{2011}.6\) chia hết cho 6

1 tháng 11 2023

Ta có công thức tổng của dãy số hình thành bởi lũy thừa của một số là:

S = a(1 - r^n)/(1 - r),

trong đó a là số hạng đầu tiên, r là công bội và n là số lượng số hạng.

Áp dụng công thức trên vào bài toán của chúng ta, ta có:

a = 5, r = 5 và n = 99.

Thay các giá trị vào, ta có:

S = 5(1 - 5^99)/(1 - 5).

Tuy nhiên, để xác định xem S có chia hết cho 31 hay không, ta cần tính S modulo 31.

Ta biết rằng nếu a ≡ b (mod m) và c ≡ d (mod m), thì a + c ≡ b + d (mod m) và a * c ≡ b * d (mod m).

Áp dụng tính chất này vào công thức trên, ta có:

S ≡ 5(1 - 5^99)/(1 - 5) ≡ 5(1 - 5^99)/(-4) ≡ -5(1 - 5^99)/4 (mod 31).

Tiếp theo, ta cần xác định giá trị của 5^99 modulo 31.

Ta biết rằng nếu a ≡ b (mod m), thì a^n ≡ b^n (mod m).

Áp dụng tính chất này vào bài toán của chúng ta, ta có:

5^99 ≡ (5^3)^33 ≡ 125^33 ≡ 4^33 (mod 31).

Tiếp tục, ta có thể tính giá trị của 4^33 modulo 31 bằng cách sử dụng phép lũy thừa modulo:

4^1 ≡ 4 (mod 31), 4^2 ≡ 16 (mod 31), 4^3 ≡ 2 (mod 31), 4^4 ≡ 8 (mod 31), 4^5 ≡ 1 (mod 31).

Do đó, ta có:

4^33 ≡ 4^5 * 4^4 * 4^4 * 4^4 * 4^4 * 4^4 * 4 ≡ 1 * 8 * 8 * 8 * 8 * 8 * 4 ≡ 4096 ≡ 1 (mod 31).

Vậy, chúng ta có:

S ≡ -5(1 - 5^99)/4 ≡ -5(1 - 1)/4 ≡ 0 (mod 31).

Kết quả là tổng A chia hết cho 31.

DT
30 tháng 10 2023

A = (5 +5^2+5^3) +(5^4+5^5+5^6)+...+(5^97+5^98+5^99)

= 5(1+5+5^2)+5^4(1+5+5^2)+...+5^97(1+5+5^2)

= 5.31+5^4.31+...+5^97.31

= 31(5+5^4+...+5^97) chia hết cho 31

24 tháng 8 2018

Bạn ơi số mũ to vậy 

Nếu vậy tính sẽ to lắm  !

24 tháng 8 2018

Có \(10^{2001}=10000...000\)( 2001 chữ số 0)

Có \(10^{2001}+2=1000...002\)(2000 chữ số 0)

Tổng các chữ số là :

1 + 0 + 0 + ... + 0 + 2 = 3 chia hết cho 3

Vậy ................