K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2020

\(A=x+\frac{1}{x^2}=\frac{x}{8}+\frac{x}{8}+\frac{1}{x^2}+\frac{3x}{4}\ge3\sqrt[3]{\frac{x}{8}.\frac{x}{8}.\frac{1}{x^2}}+\frac{3.2}{4}=\frac{3}{4}+\frac{6}{4}=\frac{9}{4}\) ( áp dụng cô- si cho 3 số không âm )

Dấu "=" xảy ra <=> x = 2

NV
13 tháng 5 2021

\(\sqrt{A}\ge0\) ; \(\forall A\) nên GTNN của \(\sqrt{A}\) là \(0\)

Dấu "=" xảy ra khi \(x=0\)

1 tháng 8 2018

\(|a+b|\ge0\)\(\Rightarrow GTNN|a+b|=0\)

\(|a|\ge0;|b|\ge0\Rightarrow a=0;b=0\)

\(C=3|x+2|+|3x+1|\)

\(\hept{\begin{cases}|x+2|\ge0\Rightarrow3|x+2|\ge0\\|3x+1|\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}GTNN3|x+2|=0\\GTNN|3x+1|=0\end{cases}}\Rightarrow C=0\)

\(\hept{\begin{cases}3|x+2|=0\Rightarrow|x+2|=0\Rightarrow x+2=0\Rightarrow x=-2\\|3x+1|=0\Rightarrow3x+1=0\Rightarrow3x=-1\Rightarrow x=\frac{-1}{3}\end{cases}}\)

\(\Rightarrow x\)không thể có 2 giá trị.\(\Rightarrow\orbr{\begin{cases}3|x+2|=0\\|3x+1|=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{-1}{3}\end{cases}}\)

Xét \(x=-2\)\(x=\frac{-1}{3}\):

\(x=-2\Rightarrow3|x+2|=0\Rightarrow C=|3x+1|\)

\(C1=|3x+1|\)

   \(=|3.\left(-2\right)+1|\)

   \(=|\left(-6\right)+1|\)

   \(=|-5|\)

   \(=5\)

\(x=\frac{-1}{3}\Rightarrow|3x+1|=0\Rightarrow C=3|x+2|\)

\(C2=3|x+2|\)

   \(=3|\frac{-1}{3}+2|\)

   \(=3|\frac{-1+6}{3}|\)

   \(=3|\frac{5}{3}|\)

   \(=\frac{3.5}{3}\)

   \(=5\)

\(C1=C2=5\)

\(\Rightarrow GTNNC=5\)

20 tháng 5 2021

No description available.

đây nhá bạn

27 tháng 5 2017
Kb nhé
AH
Akai Haruma
Giáo viên
20 tháng 7 2019

Câu 1:

\(a-\sqrt{a}+1=a-2.\sqrt{a}.\frac{1}{2}+\frac{1}{2^2}+\frac{3}{4}\)

\(=(\sqrt{a}-\frac{1}{2})^2+\frac{3}{4}\)

Ta thấy \((\sqrt{a}-\frac{1}{2})^2\geq 0, \forall a\) không âm

\(\Rightarrow a-\sqrt{a}+1=(\sqrt{a}-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}\)

Vậy GTNN của biểu thức là $\frac{3}{4}$. Dấu "=" xảy ra khi \((\sqrt{a}-\frac{1}{2})^2=0\Leftrightarrow a=\frac{1}{4}\)

AH
Akai Haruma
Giáo viên
20 tháng 7 2019

Câu 2:

\(\sqrt{1+2a-a^2}=\sqrt{2-(a^2-2a+1)}=\sqrt{2-(a-1)^2}\)

Ta thấy \((a-1)^2\geq 0, \forall a\) thuộc tập xác định

\(\Rightarrow 2-(a-1)^2\leq 2\)

\(\Rightarrow \sqrt{1+2a-a^2}=\sqrt{2-(a-1)^2}\leq \sqrt{2}\)

Vậy GTLN của biểu thức là $\sqrt{2}$ khi \((a-1)^2=0\Leftrightarrow a=1\)

19 tháng 8 2019

Dự đoán x = 2/5; y =4/7, giúp ta có được lời giải:D

\(A=\frac{5x}{2}+\frac{2}{5x}+\frac{7y}{2}+\frac{8}{7y}+\frac{1}{2}\left(x+y\right)\)

Đến đây đánh giá cô si + kết hợp giả thiết là xong:D