Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\dfrac{a}{8}+\dfrac{a}{8}+\dfrac{1}{a^2}+\dfrac{3a}{4}\ge3\sqrt[3]{\dfrac{a^2}{8a^2}}+\dfrac{3\cdot2}{4}=\dfrac{3}{4}+\dfrac{3}{2}=\dfrac{9}{4}\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{8}=\dfrac{1}{a^2}\\a=2\end{matrix}\right.\Leftrightarrow a=2\)
c/ Ta có:\(6a-5b=1\)
\(\Rightarrow5b=6a-1\)
Theo đề thì: \(A=4a^2+\left(6a-1\right)^2=40a^2-12a+1\)
\(=\left(\left(2\sqrt{10}a\right)^2-\frac{2.2.\sqrt{10}.3a}{\sqrt{10}}+\frac{9}{10}\right)+\frac{1}{10}\)
\(=\left(2\sqrt{10}a-\frac{3}{\sqrt{10}}\right)^2+\frac{1}{10}\ge\frac{1}{10}\)
1) Đề sai, thử với x = -2 là thấy không thỏa mãn.
Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:
\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)
\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)
Không thể xảy ra dấu đẳng thức.
Câu a)
Ta có a + b \(\ge\)1 => a \(\ge\) 1 - b
Nên a2 + b2 \(\ge\) (1 - b)2 + b2 = 2b2 - 2b + 1 = 2(b2 - 2b.1/2 + 1/4 + 1/2) = 2(b - 1/2)2 + 1 \(\ge\) 1
Câu b) Áp dụng BĐT Bunhiacopxki ta có
(x + y)2 = (1.x + 1.y)2 \(\le\) (12 + 12)(x2 + y2) = 2.1 = 2
Dấu "=" xảy ra <=> x = y
câu1 : cần sửa lại là A2 + B2 \(\ge\frac{1}{2}\)
Ta chứng minh được : (A+B)2 \(\le2.\left(A^2+B^2\right)\) (*)
<=> A2 + B2 + 2A.B \(\le\) 2. (A2 + B2)
<=> 0 \(\le\) A2 + B2 - 2.A.B <=> 0 \(\le\) (A-B)2 luôn đúng => (*) đúng
b) Áp sung câu a => (x+y)2 \(\le\)2.(x2 + y2) = 2 => đpcm
\(A=x+\frac{1}{x^2}=\frac{x}{8}+\frac{x}{8}+\frac{1}{x^2}+\frac{3x}{4}\ge3\sqrt[3]{\frac{x}{8}.\frac{x}{8}.\frac{1}{x^2}}+\frac{3.2}{4}=\frac{3}{4}+\frac{6}{4}=\frac{9}{4}\) ( áp dụng cô- si cho 3 số không âm )
Dấu "=" xảy ra <=> x = 2