Tìm nghiệm của phương trình: \(sin^3x+cos^3x=4\left(sinx+cosx\right)\) trong khoảng \(\left(0;\pi\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{sinx+2sinx.sin2x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{sinx+2sinx.sin2x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{sinx+cosx-cos3x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{sinx+cosx+sin3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{2sin2x.cosx+cosx}{1+2sin2x}=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{cosx\left(2sin2x+1\right)}{1+2sin2x}=\dfrac{2+2cos^2x}{5}\)
⇒ cosx = \(\dfrac{2+2cos^2x}{5}\)
⇔ 2cos2x - 5cosx + 2 = 0
⇔ \(\left[{}\begin{matrix}cosx=2\\cosx=\dfrac{1}{2}\end{matrix}\right.\)
⇔ \(x=\pm\dfrac{\pi}{3}+k.2\pi\) , k là số nguyên
2, \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\left(1+cot2x.cotx\right)=0\)
⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\dfrac{cos2x.cosx+sin2x.sinx}{sin2x.sinx}=0\)
⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\dfrac{cosx}{sin2x.sinx}=0\)
⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2cosx}{2cosx.sin^4x}=0\)
⇒ \(48-\dfrac{1}{cos^4x}-\dfrac{1}{sin^4x}=0\). ĐKXĐ : sin2x ≠ 0
⇔ \(\dfrac{1}{cos^4x}+\dfrac{1}{sin^4x}=48\)
⇒ sin4x + cos4x = 48.sin4x . cos4x
⇔ (sin2x + cos2x)2 - 2sin2x. cos2x = 3 . (2sinx.cosx)4
⇔ 1 - \(\dfrac{1}{2}\) . (2sinx . cosx)2 = 3(2sinx.cosx)4
⇔ 1 - \(\dfrac{1}{2}sin^22x\) = 3sin42x
⇔ \(sin^22x=\dfrac{1}{2}\) (thỏa mãn ĐKXĐ)
⇔ 1 - 2sin22x = 0
⇔ cos4x = 0
⇔ \(x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\)
3, \(sin^4x+cos^4x+sin\left(3x-\dfrac{\pi}{4}\right).cos\left(x-\dfrac{\pi}{4}\right)-\dfrac{3}{2}=0\)
⇔ \(\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x+\dfrac{1}{2}sin\left(4x-\dfrac{\pi}{2}\right)+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)
⇔ \(1-\dfrac{1}{2}sin^22x+\dfrac{1}{2}sin2x-\dfrac{1}{2}cos4x-\dfrac{3}{2}=0\)
⇔ \(\dfrac{1}{2}sin2x-\dfrac{1}{2}cos4x-\dfrac{1}{2}-\dfrac{1}{2}sin^22x=0\)
⇔ sin2x - sin22x - (1 + cos4x) = 0
⇔ sin2x - sin22x - 2cos22x = 0
⇔ sin2x - 2 (cos22x + sin22x) + sin22x = 0
⇔ sin22x + sin2x - 2 = 0
⇔ \(\left[{}\begin{matrix}sin2x=1\\sin2x=-2\end{matrix}\right.\)
⇔ sin2x = 1
⇔ \(2x=\dfrac{\pi}{2}+k.2\pi\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\)
4, cos5x + cos2x + 2sin3x . sin2x = 0
⇔ cos5x + cos2x + cosx - cos5x = 0
⇔ cos2x + cosx = 0
⇔ \(2cos\dfrac{3x}{2}.cos\dfrac{x}{2}=0\)
⇔ \(cos\dfrac{3x}{2}=0\)
⇔ \(\dfrac{3x}{2}=\dfrac{\pi}{2}+k\pi\)
⇔ x = \(\dfrac{\pi}{3}+k.\dfrac{2\pi}{3}\)
Do x ∈ [0 ; 2π] nên ta có \(0\le\dfrac{\pi}{3}+k\dfrac{2\pi}{3}\le2\pi\)
⇔ \(-\dfrac{1}{2}\le k\le\dfrac{5}{2}\). Do k là số nguyên nên k ∈ {0 ; 1 ; 2}
Vậy các nghiệm thỏa mãn là các phần tử của tập hợp
\(S=\left\{\dfrac{\pi}{3};\pi;\dfrac{5\pi}{3}\right\}\)
1.
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
Pt trở thành:
\(t^3+\frac{t^2-1}{2}-1=0\)
\(\Leftrightarrow2t^3+t^2-3=0\)
\(\Leftrightarrow\left(t-1\right)\left(2t^2+3t+3\right)=0\)
\(\Leftrightarrow t=1\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
4.
Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{1-t^2}{2}\end{matrix}\right.\)
Pt trở thành:
\(t^3=1+\frac{1-t^2}{2}\)
\(\Leftrightarrow2t^3+t^2-3=0\)
\(\Leftrightarrow\left(t-1\right)\left(2t^2+3t+3\right)=0\)
\(\Leftrightarrow t=1\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow...\)
\(cos^3x+sin^3x=sin2x+sinx+cosx\\ \Leftrightarrow\left(sinx+cosx\right)\left(1-\dfrac{sin2x}{2}\right)=sin2x+sinx+cosx\\ \Leftrightarrow-\dfrac{1}{2}sin2x\left(sinx+cosx+2\right)=0\\ \)
Mà \(sinx+cosx=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)>-2\)
\(\Rightarrow sin2x=0\Leftrightarrow x=\dfrac{k\pi}{2}\left(k\in Z\right)\)
Tổng các nghiệm của phương trình trong \(\left[0;2018\pi\right]\) là:
\(S=\dfrac{\left(0+2018\pi\right)\left(\dfrac{2018\pi-0}{\dfrac{\pi}{2}}+1\right)}{2}=4073333\pi\)
mik lm biếng quá mik chỉ nói cách làm thôi nha bạn
1) chia hai vế cho cos^2(x) \(\sqrt{3}tan^2x+\left(1-\sqrt{3}\right)tanx-1+\left(1-\sqrt{3}\right)\left(1+tan^2x\right)=0\)
đặt t = tanx rr giải thôi =D ( máy 570 thì mode5 3 còn máy 580 thì mode 9 2 2) :)))
2) cx làm cách tương tự chia 2 vế cho cos^2x
3) giữ vế trái bung vế phải ra
\(sin2x-2sin^2x=2-4sin^22x\)
đặt t = sin2x (-1=<t=<1)
4) đẩy sinx cosx qua trái hết
\(sinx\left(sin^2-1\right)-cosx\left(cos^2x+1\right)=0\)
\(sinx\left(-cos^2x\right)-cos\left(cos^2x+1\right)=0\)
\(-cos\left(sinxcosx+cos^2x+1\right)=0\)
cái vế đầu cosx=0 bn bik giả rr mà dễ ẹc à còn vế sau thì chia cho cos^2(x) như mấy bài trên rr sau đó đặt t = tanx rr bấm máy là ra thui :))
5)bung cái hằng đẳng thức ra sau đó đặt t=sinx+cosx (t thuộc [-căn(2) ; căn(2)]
khi đó ta có sinxcosx=1/2 sin2x= 1/2t^2 - 1/2
làm đi là ra à
a, (sinx + cosx)(1 - sinx . cosx) = (cosx - sinx)(cosx + sinx)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx-sinx=1-sinx.cosx\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx+sinx.cosx-1-sinx=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\\left(cosx-1\right)\left(sinx+1\right)=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sin\left(x+\dfrac{\pi}{4}\right)=0\\cosx=1\\sinx=-1\end{matrix}\right.\)
b, (sinx + cosx)(1 - sinx . cosx) = 2sin2x + sinx + cosx
⇔ (sinx + cosx)(1 - sinx.cosx - 1) = 2sin2x
⇔ (sinx + cosx).(- sinx . cosx) = 2sin2x
⇔ 4sin2x + (sinx + cosx) . sin2x = 0
⇔ \(\left[{}\begin{matrix}sin2x=0\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+4=0\end{matrix}\right.\)
⇔ sin2x = 0
c, 2cos3x = sin3x
⇔ 2cos3x = 3sinx - 4sin3x
⇔ 4sin3x + 2cos3x - 3sinx(sin2x + cos2x) = 0
⇔ sin3x + 2cos3x - 3sinx.cos2x = 0
Xét cosx = 0 : thay vào phương trình ta được sinx = 0. Không có cung x nào có cả cos và sin = 0 nên cosx = 0 không thỏa mãn phương trình
Xét cosx ≠ 0 chia cả 2 vế cho cos3x ta được :
tan3x + 2 - 3tanx = 0
⇔ \(\left[{}\begin{matrix}tanx=1\\tanx=-2\end{matrix}\right.\)
d, cos2x - \(\sqrt{3}sin2x\) = 1 + sin2x
⇔ cos2x - sin2x - \(\sqrt{3}sin2x\) = 1
⇔ cos2x - \(\sqrt{3}sin2x\) = 1
⇔ \(2cos\left(2x+\dfrac{\pi}{3}\right)=1\)
⇔ \(cos\left(2x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}=cos\dfrac{\pi}{3}\)
e, cos3x + sin3x = 2cos5x + 2sin5x
⇔ cos3x (1 - 2cos2x) + sin3x (1 - 2sin2x) = 0
⇔ cos3x . (- cos2x) + sin3x . cos2x = 0
⇔ \(\left[{}\begin{matrix}sin^3x=cos^3x\\cos2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}sinx=cosx\\cos2x=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\cos2x=0\end{matrix}\right.\)
d/
\(\Leftrightarrow2\left(sinx-cosx\right)\left(1+sinx.cosx\right)=\sqrt{3}cos2x\left(sinx-cosx\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\left(1\right)\\2\left(1+sinx.cosx\right)=\sqrt{3}cos2x\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=0\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=0\)
\(\Leftrightarrow x-\frac{\pi}{4}=k\pi\Rightarrow x=\frac{\pi}{4}+k\pi\)
\(\left(2\right)\Leftrightarrow2+2sinx.cosx=\sqrt{3}cos2x\)
\(\Leftrightarrow2+sin2x=\sqrt{3}cos2x\)
\(\Leftrightarrow\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x=-1\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=-1\)
\(\Leftrightarrow2x-\frac{\pi}{3}=-\frac{\pi}{2}+k2\pi\)
\(\Rightarrow x=-\frac{\pi}{12}+k\pi\)
c/
\(\Leftrightarrow sinx-sin^2x=cosx-cos^2x\)
\(\Leftrightarrow sinx-cosx-\left(sin^2x-cos^2x\right)=0\)
\(\Leftrightarrow sinx-cosx-\left(sinx-cosx\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(1-sinx-cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\1-sinx-cosx=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=0\\1-\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=k\pi\\x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
Lời giải:
\(3(\sin x+\cos x)-(\sin x+\cos x)^3=(\sin x+\cos x)[3-(\sin x+\cos x)^2]\)
\(=(\sin x+\cos x)[3-(\sin ^2x+\cos ^2x)-2\sin x\cos x]\)
\(=(\sin x+\cos x)(3-1-2\sin x\cos x)=2(\sin x+\cos x)(1-\sin x\cos x)=2(\sin x+\cos x)(\sin ^2x+\cos ^2x-\sin x\cos x)\)
\(=2(\sin ^3+\cos ^3x)\)
\(\Rightarrow \frac{3(\sin x+\cos x)-(\sin x+\cos x)^3}{2}=\sin ^3x+\cos ^3x\)(đpcm)
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x+\dfrac{1}{2}sin\left(4x-\dfrac{\pi}{2}\right)+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)
\(\Leftrightarrow1-\dfrac{1}{2}sin^22x-\dfrac{1}{2}cos4x+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)
\(\Leftrightarrow1-\dfrac{1}{2}\left(\dfrac{1-cos4x}{2}\right)-\dfrac{1}{2}cos4x+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)
\(\Leftrightarrow-\dfrac{3}{4}-\dfrac{1}{4}cos4x+\dfrac{1}{2}sin2x=0\)
\(\Leftrightarrow-\dfrac{3}{4}-\dfrac{1}{4}\left(1-2sin^22x\right)+\dfrac{1}{2}sin2x=0\)
\(\Leftrightarrow...\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)=4\left(sinx+cosx\right)\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)-4\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(-3-\frac{1}{2}sin2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx+sinx=0\\sin2x=-6\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow cosx=-sinx=cos\left(\frac{\pi}{2}+x\right)\)
\(\Rightarrow x=-\frac{\pi}{2}-x+k2\pi\)
\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)
\(0\le-\frac{\pi}{4}+k\pi\le\pi\Rightarrow k=1\)
\(\Rightarrow x=\frac{3\pi}{4}\)