Tìm x biết:
a) 6x2 - 5x = 0
b) (8 - 5x) (x + 2) + 4(x - 2)(x + 1) + 2(x - 2)(x + 2) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Phần a mình lấy vế phải bằng 0 nha ^^)
a,
\(\left(5x-1\right)^2-\left(5x-4\right)\left(5x+4\right)+7=0\\ \Leftrightarrow25x^2-10x+1-\left(25x^2-16\right)+7=0\\ \Leftrightarrow25x^2-10x+1-25x^2+16+7=0\\ \Leftrightarrow-10x+24=0\\ \Leftrightarrow x=2,4\)
b,
\(5x^2+4xy+4y^2+4x+1=0\left(1\right)\\ \Leftrightarrow4x^2+4x+1+x^2+4xy+4y^2=0\\ \Leftrightarrow\left(2x+1\right)^2+\left(x+2y\right)^2=0\left(1a\right)\)
Do \(VT\ge0\) với \(\forall x,y\in R\) nên:
\(\left(1a\right)\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\x+2y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=\frac{1}{4}\end{matrix}\right.\)
c,
\(\left(x+2\right)^3-x\left(x-1\right)\left(x+1\right)=6x^2+21\\ \Leftrightarrow x^3+6x^2+12x+8-x\left(x^2-1\right)-6x^2-21=0\\ \Leftrightarrow x^3+12x+8-x^3+x-21=0\\ \Leftrightarrow13x-13=0\\ \Leftrightarrow x=1\)
Chúc bạn học tốt nha.
\(b)5x^2 + 4xy + 4y^2 + 4x + 1 = 0\)
\(\Leftrightarrow\) \(4x^2 + 4x + 1 + x^2 + 4xy + 4y^2 = 0\)
\(\Leftrightarrow\)\((2x + 1)^2 + (x + 2y)^2 = 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\x+2y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=\frac{1}{4}\end{matrix}\right.\)
\(c)(x+2)^3-x(x-1)(x+1)=6x^2+21\)
\(\Leftrightarrow x^3+6x^2+12x+8-x\left(x^2-1\right)=6x^2+21\\ \Leftrightarrow13x+8=21\\ \Leftrightarrow13x=21-8\\ \Leftrightarrow13x=13\\ \Leftrightarrow x=1\)
Bài 1:
a: \(\Leftrightarrow x^2-5x+6< =0\)
=>(x-2)(x-3)<=0
=>2<=x<=3
b: \(\Leftrightarrow\left(x-6\right)^2< =0\)
=>x=6
c: \(\Leftrightarrow x^2-2x+1>=0\)
\(\Leftrightarrow\left(x-1\right)^2>=0\)
hay \(x\in R\)
\(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow8x+16-5x^2-10x+4x^2+4x-8x-8+2x^2-8=0\)
\(\Leftrightarrow x^2-6x=0\Leftrightarrow x\left(x-6\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}}\)
Vậy S = { 0, 6}
a) (x+2)(x+3)-(x-2)(x+5)=0
\(x^2+3x+2x+6-x^2-5x+2x+10=0\)
\(2x+16=0\)
\(2x=-16\)
\(x=-8\)
Vậy......
b) (8-5x)(x+2)+4(x-2)(x+1)+2(x-2)(x+2)=0
\(8x+16-5x^2-10x+4x^2+4x-8x-8+2x^2+4x-4x-8=0\)
\(-6x+x^2=0\)
\(x\left(-6+x\right)=0\)
=> x=0 hoặc -6+x=0 <=>x=6
Vậy \(x\in\left\{0;6\right\}\)
a) \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+2\right)x+\left(x+2\right).3-\left(x+5\right)x+\left(x+5\right).2=0\)
\(\Leftrightarrow x^2+2x+3x+6-x^2+5x+2x+10=0\)
\(\Leftrightarrow12x+16=0\)
\(\Leftrightarrow12x=-16\)
\(\Leftrightarrow x=\frac{-4}{3}\)
Vậy...