K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 7 2020

\(\Leftrightarrow\left(2sinx+1\right)\left(2sinx+1+sinx-\frac{3}{2}\right)=0\)

\(\Leftrightarrow\left(2sinx+1\right)\left(3sinx-\frac{1}{2}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\sinx=\frac{1}{6}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\\x=arcsin\left(\frac{1}{6}\right)+k2\pi\\x=\pi-arcsin\left(\frac{1}{6}\right)+k2\pi\end{matrix}\right.\)

NV
9 tháng 7 2020

a/ \(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx-2=0\left(vn\right)\end{matrix}\right.\) (vô nghiệm do \(sinx\le1\) ; \(\forall x\))

\(\Leftrightarrow x=k\pi\)

b/ \(\Leftrightarrow\left[{}\begin{matrix}2sinx-3=0\\2sinx-\sqrt{2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{3}{2}\left(vn\right)\\sinx=\frac{\sqrt{2}}{2}=sin\frac{\pi}{4}\end{matrix}\right.\) (lý do vô nghiệm như câu a)

\(\Rightarrow\left[{}\begin{matrix}sinx=\frac{\pi}{4}+k2\pi\\sinx=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

c/ ĐKXĐ: \(sinx\ne-\frac{1}{2}\)

\(\Leftrightarrow2sinx-1=6sinx+3\)

\(\Leftrightarrow4sinx=-4\Rightarrow sinx=-1\)

\(\Rightarrow x=-\frac{\pi}{2}+k2\pi\)

d/ \(\Leftrightarrow2=3-sinx\)

\(\Leftrightarrow sinx=1\Rightarrow x=\frac{\pi}{2}+k2\pi\)

(các câu \(k\in Z\) )

NV
20 tháng 9 2020

\(\Leftrightarrow\left(2sinx-1\right)\left(2sinx-1-sinx+\frac{3}{2}\right)=0\)

\(\Leftrightarrow\left(2sinx-1\right)\left(sinx+\frac{1}{2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sinx=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

29 tháng 7 2019
https://i.imgur.com/9qSBKHl.jpg
29 tháng 7 2019
https://i.imgur.com/zw6cbvs.jpg
NV
26 tháng 9 2020

a/ ĐKXĐ: \(sinx\ne-1\)

\(\Leftrightarrow\left(2sinx+1\right)\left(3cos4x+2sinx\right)+4cos^2x+1=8+8sinx\)

\(\Leftrightarrow6sinx.cos4x+4sin^2x+3cos4x+2sinx+4cos^2x+1=8+8sinx\)

\(\Leftrightarrow6sinx.cos4x+3cos4x-6sinx-3=0\)

\(\Leftrightarrow6sinx\left(cos4x-1\right)+3\left(cos4x-1\right)=0\)

\(\Leftrightarrow\left(6sinx+3\right)\left(cos4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\cos4x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\1-2sin^22x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\sin^2x\left(1-sin^2x\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\sin^2x\left(1+sinx\right)\left(1-sinx\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\sinx=0\\sinx=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\\x=k\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

NV
26 tháng 9 2020

b/ ĐKXĐ: \(\left\{{}\begin{matrix}tanx\ne-1\\cosx\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left(1+sinx+cos2x\right).\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=cosx\left(1+\frac{sinx}{cosx}\right)\)

\(\Leftrightarrow\left(1+sinx+cos2x\right)\left(sinx+cosx\right)=cosx+sinx\)

\(\Leftrightarrow\left(cosx+sinx\right)\left(sinx+cos2x\right)=0\)

\(\Leftrightarrow sinx+cos2x=0\)

\(\Leftrightarrow-2sin^2x+sinx+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\left(l\right)\\sinx=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

NV
22 tháng 9 2019

a/ ĐKXĐ: \(\left\{{}\begin{matrix}sinx\ne1\\sinx\ne-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne\frac{\pi}{2}+k2\pi\\x\ne-\frac{\pi}{6}+k2\pi\\x\ne\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow cosx-sin2x=\sqrt{3}\left(1+sinx-2sin^2x\right)\)

\(\Leftrightarrow cosx-sin2x=\sqrt{3}\left(cos2x+sinx\right)\)

\(\Leftrightarrow\sqrt{3}sinx-cosx=sin2x+\sqrt{3}cos2x\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx=\frac{1}{2}sin2x+\frac{\sqrt{3}}{2}cos2x\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{3}\right)=sin\left(2x+\frac{\pi}{6}\right)\)

\(\Leftrightarrow...\)

b/ ĐKXĐ: \(cosx+\sqrt{3}sinx\ne0\Leftrightarrow sin\left(x+\frac{\pi}{6}\right)\ne0\Rightarrow...\)

Đặt \(cosx+\sqrt{3}sinx=2sin\left(x+\frac{\pi}{6}\right)=a\) với \(-2\le a\le2\):

\(a=\frac{3}{a}+1\Leftrightarrow a^2-a-3=0\)

\(\Rightarrow\left[{}\begin{matrix}a=\frac{1+\sqrt{13}}{2}>2\left(l\right)\\a=\frac{1-\sqrt{13}}{2}\end{matrix}\right.\)

\(\Rightarrow2sin\left(x+\frac{\pi}{6}\right)=\frac{1-\sqrt{13}}{2}\)

\(\Rightarrow sin\left(x+\frac{\pi}{6}\right)=\frac{1-\sqrt{13}}{4}=sin\alpha\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=\alpha+k2\pi\\x+\frac{\pi}{6}=\pi-\alpha+k2\pi\end{matrix}\right.\) \(\Rightarrow x=...\)

NV
9 tháng 10 2020

4.

\(\Leftrightarrow2sinx.cosx-\left(1-2sin^2x\right)+3sinx-cosx-1=0\)

\(\Leftrightarrow cosx\left(2sinx-1\right)+2sin^2x+3sinx-2=0\)

\(\Leftrightarrow cosx\left(2sinx-1\right)+\left(2sinx-1\right)\left(sinx+2\right)=0\)

\(\Leftrightarrow\left(2sinx-1\right)\left(sinx+cosx+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2sinx-1=0\\sinx+cosx=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sin\left(x+\frac{\pi}{4}\right)=-\sqrt{2}< -1\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
9 tháng 10 2020

2.

ĐKXĐ: ...

\(\Leftrightarrow cot\left(\frac{\pi}{4}-x\right)=-\frac{1}{\sqrt{3}}\)

\(\Leftrightarrow\frac{\pi}{4}-x=-\frac{\pi}{3}+k\pi\)

\(\Leftrightarrow x=\frac{7\pi}{12}+k\pi\)

3.

\(\Leftrightarrow cos\frac{x}{4}sinx+sin\frac{x}{4}.cosx-3\left(sin^2x+cos^2x\right)+cosx=0\)

\(\Leftrightarrow sin\left(x+\frac{x}{4}\right)=-cosx\)

\(\Leftrightarrow sin\frac{5x}{4}=sin\left(x-\frac{\pi}{2}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{5x}{4}=x-\frac{\pi}{2}+k2\pi\\\frac{5x}{4}=\frac{3\pi}{2}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

4 tháng 2 2016

Hỏi đáp Toán

4 tháng 2 2016

toán mấy tek