cho tam giác ABC có đường coa AH ( H nằm giữa C và D ) AH=12cm, HB=9cm,BC=25cm
a) CM tam giác ABC vuông tại A
b) Kẻ Bx // AC cắt AH tại D. tính HD và cm AB^2=AC.BD
c) kẻ DE vuông với AC ( E thuộc AC ) DE cắt BC tại F. cm BH^2=HF.HC
d) CM S tam giác ABH = S tam giác CDH ( ko cần tính S)
a) Ta có: BH+CH=BC(H nằm giữa B và C)
hay CH=BC-BH=25-9=16(cm)
Áp dụng định lí pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AB^2=12^2+9^2=225\)
\(\Leftrightarrow AB=\sqrt{225}=15cm\)
Áp dụng định lí pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=12^2+16^2=400\)
hay \(AC=\sqrt{400}=20cm\)
Ta có: \(AB^2+AC^2=15^2+20^2=625cm\)
\(BC^2=25^2=625cm\)
Do đó: \(BC^2=AB^2+AC^2\)(=625)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(định lí pytago đảo)
b) Xét ΔAHC vuông tại H và ΔDHB vuông tại H có
\(\widehat{CAH}=\widehat{BDH}\)(hai góc so le trong, AC//DB)
Do đó: ΔAHC∼ΔDHB(g-g)
⇒\(\frac{AH}{DH}=\frac{HC}{HB}\)
⇒\(\frac{12}{DH}=\frac{16}{9}\)
⇒\(DH=\frac{12\cdot9}{16}=\frac{108}{16}=6,75cm\)
Vậy: DH=6,75cm
Ta có: AC//BD(gt)
AC⊥AB(ΔABC vuông tại A)
Do đó: AB⊥BD(định lí 2 từ vuông góc tới song song)
Xét ΔABD vuông tại B và ΔCAB vuông tại A có
\(\widehat{BAD}=\widehat{ACB}\left(=90^0-\widehat{ABC}\right)\)
Do đó: ΔABD∼ΔCAB(g-g)
⇒\(\frac{AB}{CA}=\frac{BD}{AB}\)
hay \(AB^2=AC\cdot BD\)(đpcm)