K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2020

Bài này khá dễ :

Vì \(0\le a;b;c\) và \(a+b+c=1\)nên : \(0\le a;b;c\le1\)

Suy ra :  \(a\left(1-a\right)\ge0\)\(\Leftrightarrow a-a^2\ge0\Leftrightarrow a\ge a^2\)

CMTT : \(b\ge b^2;c\ge c^2\)

Vì \(a\ge a^2\Rightarrow11a\ge a^2+10a\) ( do \(a\ge0\)

\(\Leftrightarrow11a+25\ge a^2+10a+25=\left(a+5\right)^2\)

Suy ra : \(\sqrt{11a+25}\ge\left|a+5\right|=a+5\left(a\ge0\right)\)

Cmtt : \(\sqrt{11b+25}\ge b+5;\sqrt{11c+25}\ge c+5\)

Suy ra : \(M=\sqrt{11a+25}+\sqrt{11b+25}+\sqrt{11c+25}\ge a+b+c+15=16\) ( do a + b + c = 1 )

Dấu " = " xảy ra <=> (a;b;c) = (0;0;1) và các hoán vị 

Vậy ... 

20 tháng 7 2019

Ta có bất đẳng thức phụ sau (bđt Mincopski)

\(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\left(x;y;z;t\inℝ\right)\)

Thật vậy :

 \(bđt\Leftrightarrow x^2+y^2+2\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}+z^2+t^2\ge x^2+2xz+z^2+y^2+2yt+t^2\)

\(\Leftrightarrow\sqrt{x^2z^2+x^2t^2+y^2z^2+y^2t^2}\ge xz+yt\)

*Nếu xz + yt < 0 thì bđt hiển nhiên đúng

*Nếu xz + yt > 0 thì bđt trở thành 

\(x^2z^2+x^2t^2+y^2z^2+y^2t^2\ge x^2z^2+2xyzt+y^2t^2\)

\(\Leftrightarrow x^2t^2-2xyzt+y^2z^2\ge0\)

\(\Leftrightarrow\left(xt-yz\right)^2\ge0\)(ĐÚng)

Vậy bđt được chứng minh

Áp dụng bđt trên 2 lần ta được

\(P\ge\sqrt{\left(5+5\right)^2+\left(a^2+b^2\right)^2}+\sqrt{25+c^4}\)

   \(\ge\sqrt{\left(5+5+5\right)^2+\left(a^2+b^2+c^2\right)^2}\)

   \(=\sqrt{225+\left(a^2+b^2+c^2\right)^2}\)

Bài toán quay về tìm \(min\left(a^2+b^2+c^2\right)\)biết \(2\left(a+b+c\right)+ab+bc+ca=18\)

Ta có bđt phụ sau \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)(Tự chứng minh bằng biến đổi tương đương nhé)

        \(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)

Đặt \(3\left(a^2+b^2+c^2\right)=t\left(t\ge0\right)\)

\(\Rightarrow a+b+c\le\sqrt{3t}\)

Lại có bđt phụ sau \(ab+bc+ca\le a^2+b^2+c^2=\frac{t}{3}\)

Tóm lại ta thu được 2 bđt sau \(\hept{\begin{cases}a+b+c\le\sqrt{3t}\\ab+bc+ca\le\frac{t}{3}\end{cases}}\)

Ta có \(18=2\left(a+b+c\right)+ab+bc+ca\le2\sqrt{3t}+\frac{t}{3}\)

\(\Leftrightarrow\frac{t}{3}+2\sqrt{3t}-18\ge0\)

\(\Leftrightarrow t+6\sqrt{3t}-54\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{t}\le-9-3\sqrt{3}\left(Loa_.i\cdot do\cdot\sqrt{t}\ge0\right)\\\sqrt{t}\ge9-3\sqrt{3}\left(Tm\right)\end{cases}}\)

Có \(\sqrt{t}\ge9-3\sqrt{3}\)

\(\Leftrightarrow\sqrt{3\left(a^2+b^2+c^2\right)}\ge9-3\sqrt{3}\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge108-54\sqrt{3}\)

\(\Leftrightarrow a^2+b^2+c^2\ge36-18\sqrt{3}\)

Quay trở lại bài toán \(P\ge\sqrt{225+\left(a^2+b^2+c^2\right)^2}\ge\sqrt{225+\left(36-18\sqrt{3}\right)^2}\)

Dấu "=" xảy ra tại a = b = c

P/S: sai đâu thì thôi nha :v a lười ktra lại lắm

NV
23 tháng 4 2021

Bạn tham khảo:

Cho \(a,b,c>\dfrac{25}{4}.\)Tìm GTNN của \(Q=\dfrac{a}{2\sqrt{b}-5}+\dfrac{b}{2\sqrt{c}-5}+\dfrac{c}{2\sqrt{a}-5}\) - Hoc24

7 tháng 3 2020

Đấu đề bổ sung = 3 nhé

7 tháng 3 2020

Xíu mk giải cho

6 tháng 2 2021

cái kia là \(3\sqrt{\dfrac{1}{a}+\dfrac{9}{b}+\dfrac{25}{c}}\)

NV
7 tháng 2 2021

\(\left(a^2+\dfrac{b^2}{3}+\dfrac{c^2}{5}\right)\left(1+3+5\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow3\sqrt{a^2+\dfrac{b^2}{3}+\dfrac{c^2}{5}}\ge a+b+c\)

\(\Rightarrow P\ge\dfrac{2}{3}\left(a+b+c\right)+3\sqrt{\dfrac{1}{a}+\dfrac{3^2}{b}+\dfrac{5^2}{c}}\)

\(\Rightarrow P\ge\dfrac{2}{3}\left(a+b+c\right)+3\sqrt{\dfrac{\left(1+3+5\right)^2}{a+b+c}}=\dfrac{2}{3}\left(a+b+c\right)+\dfrac{27}{\sqrt{a+b+c}}\)

\(\Rightarrow P\ge\dfrac{1}{2}\left(a+b+c\right)+\dfrac{27}{2\sqrt{a+b+c}}+\dfrac{27}{2\sqrt{a+b+c}}+\dfrac{1}{6}\left(a+b+c\right)\)

\(\Rightarrow P\ge3\sqrt[3]{\dfrac{27^2\left(a+b+c\right)}{2^3\left(a+b+c\right)}}+\dfrac{1}{6}.9=15\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;3;5\right)\)

1 tháng 1

1≥a=>a≥a2=>24a+25= 4a+20a+25≥4a2+2.2a.5+25=(2a+5)2
=>\(\sqrt{24a+25}\)≥2a+5
cmtt=> K≥ 2(a+b+c)+15=17
dấu "=" xảy ra  <=> (a,b,c)~(1,0,0)

 
17 tháng 6 2023

c,M =  \(\dfrac{A}{B}\) = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+5}\) :  \(\dfrac{\sqrt{x}+3}{\sqrt{x}+5}\) 

   M =  \(\dfrac{A}{B}\) = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+5}\) \(\times\) \(\dfrac{\sqrt{x}+5}{\sqrt{x}+3}\) 

   M =  \(\dfrac{A}{B}\) = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+3}\) = \(\dfrac{\sqrt{x}+3-7}{\sqrt{x}+3}\)

 M = 1  - \(\dfrac{7}{\sqrt{x}+3}\) 

 M \(\in\) Z ⇔ 7 ⋮ \(\sqrt{x}\) + 3 vì \(\sqrt{x}\) ≥ 0 ⇒ \(\sqrt{x}\) + 3 ≥ 3 ⇒ 0< \(\dfrac{7}{\sqrt{x}+3}\) ≤ \(\dfrac{7}{3}\)

⇒ M Đạt giá trị nguyên lớn nhất ⇔ \(\dfrac{7}{\sqrt{x}+3}\) đạt giá trị nguyên nhỏ nhất ⇔ \(\dfrac{7}{\sqrt{x}+3}\) = 1 ⇔ \(\sqrt{x}\) + 3  = 7 ⇔ \(\sqrt{x}\) = 4 ⇔ \(x\) = 16 

Mnguyên(max)  = 1 - 1 = 0 xảy ra khi \(x\) = 16