K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2020

PT đã cho tương đương với:

\(x^2=\left(y^2+3y\right)\left(y^2+3y+2\right)\)

Đặt y2 + 3y = a.

Khi đó x2 = a(a + 2).

Ta có: a = y(y + 3) luôn là số chẵn với mọi số nguyên y.

Đặt a = 2b.

Ta có: x2 = 2b(2b + 2) = 4b(b + 1)

Do đó x là số chẵn. Đặt x = 2c.

Ta có: c2 = b(b + 1).

Mà b, b + 1 là 2 số nguyên liên tiếp nên: \(\left[{}\begin{matrix}b=0\\b=-1\end{matrix}\right.\)

Từ đó c = 0 nên x = 0.

Tại b = 0 thì a = 0 \(\Rightarrow y^2+3y=0\Rightarrow\left[{}\begin{matrix}y=0\\y=-3\end{matrix}\right.\)

Tại b = -1 thì a = -2 \(\Rightarrow y^2+3y=-2\Rightarrow\left[{}\begin{matrix}y=-1\\y=-2\end{matrix}\right.\)

Thử lại....

29 tháng 8 2023

Ta có \(VP=y\left(y+3\right)\left(y+1\right)\left(y+2\right)\)

\(VP=\left(y^2+3y\right)\left(y^2+3y+2\right)\)

\(VP=\left(y^2+3y+1\right)^2-1\)

\(VP=t^2-1\) (với \(t=y^2+3y+1\ge0\))

pt đã cho trở thành:

\(x^2=t^2-1\)

\(\Leftrightarrow t^2-x^2=1\)

\(\Leftrightarrow\left(t-x\right)\left(t+x\right)=1\)

Ta xét các TH:

\(t-x\) 1 -1
\(t+x\) 1 -1
\(t\) 1 -1
\(x\) 0

0

Xét TH \(\left(t,x\right)=\left(1,0\right)\) thì \(y^2+3y+1=1\) \(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=-3\end{matrix}\right.\) (thử lại thỏa)

Xét TH \(\left(t,x\right)=\left(-1;0\right)\) thì \(y^2+3y+1=-1\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=-2\end{matrix}\right.\) (thử lại thỏa).

 Vậy các bộ số nguyên (x; y) thỏa mãn bài toán là \(\left(0;y\right)\) với \(y\in\left\{-1;-2;-3;-4\right\}\)

 

7 tháng 10 2017

nhân cái đầu với cái cuối

2 tháng 6 2017

\(\left(x^2+y\right)\left(x+y^2\right)=\left(x-y\right)^3\)

\(\Leftrightarrow y\left[2y^2+\left(x^2-3x\right)y+3x^2+x\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=0\\2y^2+\left(x^2-3x\right)y+3x^2+x=0\end{cases}}\)

Với \(y=0\)thì x nguyên tùy ý.

Với \(2y^2+\left(x^2-3x\right)y+3x^2+x=0\)

Ta có: \(\Delta=\left(x^2-3x\right)^2-4.2.\left(3x^2+x\right)=\left(x-8\right)x\left(x+1\right)^2\)

Với \(x=-1\) thì \(\Rightarrow y=-1\)

Với \(x\ne-1\) để y nguyên thì \(\Delta\) phải là số chính phương hay

\(\left(x-8\right)x=k^2\)

\(\Leftrightarrow\left(x^2-8x+16\right)-k^2=16\)

\(\Leftrightarrow\left(x-4+k\right)\left(x-4-k\right)=16\)

Tới đây thì đơn giản rồi b làm tiếp nhé.

2 tháng 6 2017

( x+ y) ( x + y2) = ( x - y )3


 

10 tháng 6 2017

(x+y)2 = (x+y)(x-y)

<=>x2 + 2xy + y2 = x2 - y2

<=>2y2 + 2xy = 0

<=>2y(x+y) = 0

<=> y = 0 hoặc x + y = 0

<=>y = 0 hoặc y = -x

11 tháng 6 2017

x + y = 0 hoặc y = 0

11 tháng 6 2017

kết quả là 

  y=0

    đs...

10 tháng 3 2018

x=y=0