Tìm giá trị nhỏ nhất
x mũ 100 -10x mũ 10+2029
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mọi người ơi giúp mình trả lồi câu hỏi này vớiiiiiiiiiiii
A = |\(x\) + 5| + 2023
|\(x\) + 5| ≥ 0 ⇒| \(x\) + 5| + 2023 ≥ 2023⇒ A(min) = 2023 xảy ra khi \(x\) = -5
B = (\(x+2\))2 - 2023
(\(x\) + 2)2 ≥ 0 ⇒ (\(x\) + 2)2 ≥ - 2023 ⇒ A(min) = -2023 xảy ra khi \(x\) = -2
C = \(x^2\) - 6\(x\) + 20
C = (\(x^2\) - 3\(x\)) - ( 3\(x\) - 9) + 11
C = \(x\)(\(x-3\)) - 3(\(x\) -3) + 11
C = (\(x-3\))(\(x\)-3) + 11
C = (\(x-3\))2 + 11
(\(x\) -3)2 ≥ 0 ⇒ (\(x\) - 3)2 + 11 ≥ 11 vậy C(min) = 11 xảy ra khi \(x=3\)
D = \(x^2\) + 10\(x\) - 25
D = \(x^2\) + 5\(x\) + 5\(x\) + 25 - 55
D = (\(x^2\) + 5\(x\)) + (5\(x\) + 25) - 50
D = \(x\)(\(x\) + 5) + 5(\(x\) + 5) - 50
D = (\(x\) +5)(\(x\) + 5) - 50
D = ( \(x\) + 5)2 - 50
(\(x+5\))2 ≥ 0 ⇒ (\(x\) + 5)2 - 50 ≥ -50 ⇒ D(min) = -50 xảy ra khi \(x\) = -5
1, \(4x^2-4x+3=\left(2x-1\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 1/2
Vậy GTNN biểu thức trên là 2 khi x = 1/2
2, \(-x^2+10x-30=-\left(x^2-10x+25+5\right)=-\left(x-5\right)^2-5\le-5\)
Dấu ''='' xảy ra khi x = 5
Vậy GTLN biểu thức trên là -5 khi x = 5
3, \(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu ''='' xayr ra khi x = 1/2
Vậy GTNN biểu thức là 3/4 khi x = 1/2
4, \(25x^2+10x=25x^2+10x+1-1=\left(5x+1\right)^2-1\ge-1\)
Dấu ''='' xảy ra khi x = -1/5
Vậy GTNN biểu thức trên là -1 khi x = -1/5
6, \(-x^2+8x+5=-\left(x^2-8x-5\right)=-\left(x^2-8x+16-21\right)\)
\(=-\left(x-4\right)^2+21\le21\)
Dấu ''='' xảy ra khi x = 4
Vậy GTLN biểu thức trên là 21 khi x = 4
Trả lời:
1, \(4x^2-4x+3=4x^2-4x+1+2=\left(2x-1\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi 2x - 1 = 0 <=> x = 1/2
Vậy GTNN của bt = 2 khi x = 1/2
2, \(-x^2+10x-30=-\left(x^2-10x+30\right)=-\left(x^2-10x+25+5\right)=-\left[\left(x-5\right)^2+5\right]\)
\(=-\left(x-5\right)^2-5\le-5\forall x\)
Dấu "=" xảy ra khi x - 5 = 0 <=> x = 5
Vậy GTLN của bt = - 5 khi x = 5
3, \(25x^2+10x=25x^2+10x+1-1=\left(5x+1\right)^2-1\ge-1\forall x\)
Dấu "=" xảy ra khi 5x + 1 = 0 <=> x = - 1/5
Vậy GTNN của bt = - 1 khi x = - 1/5
4, \(x^2-x+1=x^2-2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu "=" xảy ra khi x - 1/2 = 0 <=> x = 1/2
Vậy GTNN của bt = 3/4 khi x = 1/2
5, \(8x-x^2+5=-\left(x^2-8x-5\right)=-\left(x^2-8x+16-21\right)=-\left[\left(x-4\right)^2-21\right]\)
\(=-\left(x-4\right)^2+21\le21\forall x\)
Dấu "=" xảy ra khi x - 4 = 0 <=> x = 4
Vậy GTLN của bt = 21 khi x = 4
a) B = x - x2 + 2
= \(-\left(x^2-x+\frac{1}{4}-\frac{1}{4}-2\right)=-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)
=> Max B = 9/4
Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2
Vậy Max B = 9/4 <=> x = 1/2
d) Ta có P = \(x-x^2-1=-\left(x^2-x+\frac{1}{4}-\frac{1}{4}+1\right)=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\)
=> Max P = -3/4
Dấu "=" xảy ra <=> x -1/2 = 0 <=> x = 1/2
Vậy Max P = -3/4 <=> x = 1/2
A = (x^2 - 9)^2 + |y - 2| + 10
có (x^2 - 9)^2 > 0; |y - 2| > 0
=> (x^2 - 9)^2 + |y - 2| > 0
=> (x^2 - 9)^3 + |y - 2| + 10 > 10
=> A > 10
=> Min A = 10
dấu = xảy ra khi :
(x^2 - 9)^2 = 0 và |y - 2| = 0
=> x^2 - 9 = 0 và y - 2 = 0
=> x^2 = 9 và y = 2
=> x = + 3 và y = 2
nhận thấy : (x^2-9)^2 >=0
|y-2|>=0
=> biểu thức (x^2-9)+|y-2|>=0
=>(x^2-9)+|y-2|+10>=10
=>GTNN của biểu thức là 10 khi
(x^2-9)^2=0<=>x^2-9=0<=>x=+-3
|y-2|=0 <=> y=2
Vậy giá trị nhỏ nhất của biểu thức là 10 khi x=3 ;y=2 và x=-3 và y=2
Ta có:
K = x2 + y2 - 6x + y + 10
K = (x2 - 6x + 9) + (y2 + y + 1/4) + 3/4
K = (x - 3)2 + (y + 1/2)2 + 3/4 \(\ge\)3/4 \(\forall\)x; y (vì (x - 3)2 \(\ge\)0 và (y + 1/2)2 \(\ge\)0)
Dấu "=" xảy ra<=> \(\hept{\begin{cases}x-3=0\\y+\frac{1}{2}=0\end{cases}}\) <=> \(\hept{\begin{cases}x=3\\y=-\frac{1}{2}\end{cases}}\)
Vậy MinK = 3/4 <=> x = 3 và y = -1/2
x^2 -6x +10 = x^2 -2.x.3 +3^2 +1 = (x-3)^2 +1
Ma (x-3)^2 >=0 <=> (x-3)^2 +1 >=1>0 (voi moi x)
b) 4x - x^2 -5 = -(x^2 -4x +5) =-[(x^2 -4x +4)+1] = -[(x-2)^2 +1]
Ma (x+2)^2 >=0 <=> (x-2)^2 +1 >=1 <=> -[(x-2)^2 +1] <=-1 => -[(x-2)^2 +1] <0
2) a) P= x^2 -2x +5 = x^2 -2x +1 +4 = (x-1)^2 +4
Ta co: (x-1)^2 >=0 <=> (x-1)^2 +4 >=4
Vay gia tri nho nhat P=4 khi x=1
b) Q= 2x^2 -6x = 2(x^2 -3x) = 2(x^2 - 2.x.3/2 + 9/4 -9/4)= 2[(x-3/2)^2 -9/4]
Ta co: (x-3/2)^2 >=0 <=>(x-3/2)^2 -9/4 >= -9/4 <=> 2[(x-3/2)^2 -9/4] >= -9/2
Vay gia tri nho nhat Q= -9/2 khi x= 3/2
c) M= x^2 +y^2 -x +6y +10 = (x^2 -2.x.1/2 + 1/4) +(y^2 +2.y.3+9)+3/4
= ( x-1/2)^2 + (y+3)^2 +3/4
M>= 3/4
Vay GTNN cua M = 3/4 khi x=1/2 va y=-3
3)a) A= 4x - x^2 +3 = -(x^2 -4x -3) = -( x^2 -4x+4 -7) =-[(x-2)^2 -7]
Ta co: (x-2)^2>=0 <=> (x-2)^2 -7 >=-7 <=> -[(x-2)^2 -7] <=7
Vay GTLN A=7 khi x=2
b) B= x-x^2 = -(x^2 -2.x.1/2+1/4-1/4) = -[(x-1/2)^2 -1/4]
GTLN B= 1/4 khi x=1/2
c) N= 2x - 2x^2 -5 =-2( x^2 -x+5/2) = -2(x^2 - 2.x.1/2 +1/4 +9/4)
= -2[(x-1/2)^2 +9/4]
GTLN N= -9/2 khi x=1/2
Đặt \(x^{10}=a\ge0\)
Khi đó:
\(a^{10}-10a+2029\)
\(=\left(a^{10}+1+1+1+1\right)-10a+2025\)
\(\ge5\sqrt[5]{a^{10}}-10a+2025\)
\(=5a^2-10a+2025\)
\(=5\left(a^2-2a+1\right)+2020\)
\(=5\left(a-1\right)^2+2020\ge2020\)
Đẳng thức xảy ra tại x=1 hoặc x=-1