Cho 4 số thực dương \(x;y;z;t\) thỏa mãn \(x+y+z+t=2\)
Tìm giá trị nhỏ nhất của \(A=\frac{\left(x+y+z\right)\left(x+y\right)}{xyzt}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Ta có
Khi đó
Vậy giá trị nhỏ nhất của biểu thức P là 3 + 2 2
Với mọi số thực ta luôn có:
`(x-y)^2>=0`
`<=>x^2-2xy+y^2>=0`
`<=>x^2+y^2>=2xy`
`<=>(x+y)^2>=4xy`
`<=>(x+y)^2>=16`
`<=>x+y>=4(đpcm)`
\(\dfrac{1}{x+3}+\dfrac{1}{y+3}=\dfrac{x+3+y+3}{\left(x+3\right)\left(y+3\right)}\)
\(=\dfrac{x+y+6}{3x+3y+13}\)(vì \(xy=4\))
=> \(\dfrac{x+y+6}{3x+3y+13}\)≤\(\dfrac{2}{5}\)
<=> \(5\left(x+y+6\right)\)≤\(2\left(3x+3y+13\right)\)
<=>\(6x+6y+26-5x-5y-30\)≥\(0\)
<=> \(x+y-4\)≥\(0\)
Áp dụng BĐT AM-GM \(\dfrac{a+b}{2}\)≥\(\sqrt{ab}\)
Ta có \(\dfrac{x+y}{2}\)≥\(\sqrt{xy}\)
<=>\(x+y\) ≥ 2\(\sqrt{xy}\)
=>2\(\sqrt{xy}-4\)≥\(0\)
<=> \(4-4\)≥0
<=>0≥0 ( Luôn đúng )
Vậy \(\dfrac{1}{x+3}+\dfrac{1}{y+3}\)≤\(\dfrac{2}{5}\)
\(A=\frac{2^2\left(x+y+z\right)\left(x+y\right)}{4xyzt}=\frac{\left(x+y+z+t\right)^2\left(x+y+z\right)\left(x+y\right)}{4xyzt}\)
\(A\ge\frac{4\left(x+y+z\right)t\left(x+y+z\right)\left(x+y\right)}{4xyzt}=\frac{\left(x+y+z\right)^2\left(x+y\right)}{xyz}\ge\frac{4\left(x+y\right)^2z\left(x+y\right)}{xyz}\)
\(A\ge\frac{4\left(x+y\right)^2}{xy}\ge\frac{16xy}{xy}=16\)
\(A_{min}=16\) khi \(\left\{{}\begin{matrix}x+y+z+t=2\\x+y+z=t\\x+y=z\\x=y\end{matrix}\right.\) \(\Rightarrow\left(x;y;z;t\right)=...\)