K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Khi x=64 thì \(A=\dfrac{3\cdot8+1}{8+2}=\dfrac{25}{10}=\dfrac{5}{2}\)

b: \(B=\dfrac{2\sqrt{x}-4-\sqrt{x}+5}{x-4}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}+2}\)

24 tháng 5 2017

Ta co:

\(\sqrt[4]{4}VT=\sqrt[4]{4}\sqrt[4]{a^3}+\sqrt[4]{4}\sqrt[4]{b^3}+\sqrt[4]{4}\sqrt[4]{c^3}\)

\(=\sqrt[4]{4a^3}+\sqrt[4]{4b^3}+\sqrt[4]{4c^3}\)

\(=\sqrt[4]{\left(a+b+c\right)a^3}+\sqrt[4]{\left(a+b+c\right)b^3}+\sqrt[4]{\left(a+b+c\right)c^3}\)

\(>\sqrt[4]{a^4}+\sqrt[4]{b^4}+\sqrt[4]{c^4}=a+b+c\)

\(\Rightarrow VT>\frac{a+b+c}{\sqrt[4]{4}}=\frac{4}{\sqrt[4]{4}}=2\sqrt{2}\)

24 tháng 5 2017

từ dòng 3 xuống dòng 4 khó hiểu quá ạ

29 tháng 12 2023

c: P=A:B

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}}:\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\)

=>\(P=\dfrac{\sqrt{x}-2+4}{\sqrt{x}-2}=1+\dfrac{4}{\sqrt{x}-2}\)

Để P lớn nhất thì \(\dfrac{4}{\sqrt{x}-2}\) lớn nhất

=>\(\sqrt{x}-2=1\)

=>\(\sqrt{x}=3\)

=>x=9(nhận)

6 tháng 4 2016

2. x=4; (y;z)=(3;1) ; (1;3)

17 tháng 1 2021

\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{3x^2+2}-\sqrt{4+x}}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{3x^2-x-2}{\sqrt{3x^2+2}+\sqrt{4+x}}}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{3x+2}{\left(x+1\right)\left(\sqrt{3x^2+2}+\sqrt{4+x}\right)}=\dfrac{5}{2.2\sqrt{5}}=\dfrac{\sqrt{5}}{4}\).

Từ đó a = 5; b = 4 nên a - b = 1.