Cho tam giác nhọn ABC, hai đường cao BD và CE ( D thuộc AC, E thuộc AB)
a) Chứng minh: AE.AB= AD.AC
b) Biết góc A=60 độ, S abc = 120 cm vuông, tính S ADE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc DAB chung
=>ΔADB đồng dạngvới ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AE*AB và AD/AB=AE/AC
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng vói ΔABC
=>góc ADE=góc ABC
d: ΔADE đồng dạng với ΔABC
=>\(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2=\dfrac{1}{4}\)
=>\(S_{ADE}=30\left(cm^2\right)\)
a, Xét tam giác ADB và tam giác AEC có
^ADB = ^AEC = 900
^DAB _ chung
Vậy tam giác ADB ~ tam giác AEC (g.g)
b, \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\Rightarrow AD.AC=AB.AE\)
c, \(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{DE}{BC}\right)^2=\dfrac{1}{4}\)
a, theo định lý pitago tính đc BC
sau đó xét tam giác đồng dạng ABH và CBA là tìm đc AH
hok tốt
a, Xét ∆ ABD và ∆ ACE có:
góc ADB = góc AEC ( = 90°)
Góc A chung
=> ∆ABD ~ ∆ ACE (g- g)
b,
a) Xét ΔADB và ΔAEC có
\(\widehat{ADB}=\widehat{AEC}\left(=90^0\right)\)
\(\widehat{BAD}\) chung
Do đó: ΔADB∼ΔAEC(g-g)
⇒\(\frac{AD}{AE}=\frac{AB}{AC}\)
hay \(AE\cdot AB=AD\cdot AC\)(đpcm)
b) Ta có: ΔAEC vuông tại E(CE⊥AB)
⇒\(\widehat{ACE}+\widehat{A}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{ACE}=90^0-\widehat{A}=90^0-60^0=30^0\)
Xét ΔACE vuông tại E có \(\widehat{ACE}=30^0\)(cmt)
nên \(\frac{AE}{AC}=\frac{1}{2}\)(trong tam giác vuông, cạnh đối diện với góc 300 bằng một nửa cạnh huyền)(1)
Ta có: \(\frac{AD}{AE}=\frac{AB}{AC}\)(cmt)
⇒\(\frac{AD}{AB}=\frac{AE}{AC}\)(tính chất của tỉ lệ thức)(2)
Từ (1) và (2) suy ra \(\frac{AD}{AB}=\frac{AE}{AC}=\frac{1}{2}\)
Xét ΔAED và ΔACB có
\(\frac{AD}{AB}=\frac{AE}{AC}\)(cmt)
\(\widehat{EAD}\) chung
Do đó: ΔAED∼ΔACB(c-g-c)
⇒\(\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AE}{AC}\right)^2\)(tỉ số diện tích giữa hai tam giác đồng dạng)
\(\Rightarrow\frac{S_{ADE}}{120}=\frac{1}{4}\)
\(\Rightarrow S_{ADE}=\frac{120\cdot1}{4}=30cm^2\)
Vậy: \(S_{ADE}=30cm^2\)
Câu b bạn làm sai rồi