K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2021

CHO TUI LỜI GIẢI OK BN 

 

30 tháng 1 2022

a) \(\Delta ABC\) cân tại A (gt).

\(\Rightarrow\left\{{}\begin{matrix}AB=AC\\\widehat{ABC}=\widehat{ACB}\end{matrix}\right.\) (Tính chất tam giác cân).

Mà \(\widehat{ABC}+\widehat{ABM}=180^o;\widehat{ACB}+\widehat{ACN}=180^o.\)

\(\Rightarrow\widehat{ABM}=\widehat{ACN}.\)

Xét \(\Delta ABM\) và \(\Delta ACN:\)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right).\\ MB=CN\left(gt\right).\\ AB=AC\left(cmt\right).\)

\(\Rightarrow\) \(\Delta ABM\) \(=\) \(\Delta ACN\left(c-g-c\right).\)

b) Xét \(\Delta ABH\) và \(\Delta ACK:\)

\(AB=AC\left(cmt\right).\\ \widehat{AHB}=\widehat{AKC}\left(=90^o\right).\\ \widehat{HAB}=\widehat{KAC}\left(\Delta ABM=\Delta ACN\right).\)

\(\Rightarrow\Delta ABH=\Delta ACK\) (cạnh huyền - góc nhọn).

\(\Rightarrow\) AH = AK (2 cạnh tương ứng).

c) Xét \(\Delta AOH\) và \(\Delta AOK:\)

\(AH=AK\left(cmt\right).\\ AOchung.\\ \widehat{AHO}=\widehat{AKO}\left(=90^o\right).\)

\(\Rightarrow\) \(\Delta AOH\) \(=\) \(\Delta AOK\) (cạnh huyền - cạnh góc vuông).

\(\Rightarrow\) OH = OK (2 cạnh tương ứng).

Mà \(\left\{{}\begin{matrix}OB=OH-HB;OC=OK-KC.\\HB=KC\left(\Delta ABH=\Delta ACK\right).\end{matrix}\right.\)

\(\Rightarrow\) OB = OC.

\(\Rightarrow\Delta OBC\) cân tại O.

7 tháng 1

Xét tam giác ACD và tam giác MBD có:

      AD = DM (gt)

      BD = DC (gt)

   \(\widehat{BDM}\) = \(\widehat{ADC}\) (hai góc đối đỉnh)

⇒ \(\Delta\)ACD = \(\Delta\) MBD  (c-g-c)

Xét tứ giác ABMC có

     AD = DM

      BD = DC

⇒ tứ giác ABMC  là hình bình hành vì tứ giác có hai đường chéo căt nhau tại trung điểm mỗi đường thì tứ giác đó là hình bình hành.

⇒ AC // BM

⇒ \(\widehat{ABM}\) = \(\widehat{MCA}\) (vì tứ giác ABMC là hình bình hành)

 

 

 

   

 

7 tháng 1

 loading...

 xét tam giác ACD và tam giác MBD có 

AD=DM [ gt ]

BD=DC[ gt ]

BDM = ADC hai góc đối đỉnh

suy ra tam giác ACD= tam giác MBD [ c-g-c]

xét tứ giác ABMC có

AD = DM

BD=DC

suy ra tứ giác ABMC là hình bình hành vì tứ giác  có 2 đường chéo cắt nhau tại trung điểm mỗi đường thì tứ giác đó là hình bình hành

suy ra ABM=MCA vì tứ giác ABMC là hình bình hành .

20 tháng 6 2020

a) Xét ΔABMΔABM và ΔACBΔACB có:

ˆAA^ chung 

ˆABM=ˆACBABM^=ACB^

Do đó ΔABMΔABM ∽ ΔACBΔACB (g - g)

b) Vì ΔABMΔABM ∽ ΔACBΔACB (cmt)

và ABAC=AMABABAC=AMAB (Đ/n hai tam giác đồng dạng)

⇒AM=AB2AC=224=1(cm)⇒AM=AB2AC=224=1(cm)

c) Vì ΔABMΔABM ∽ ΔACBΔACB (cmt)

⇒ˆAMB=ˆABC⇒AMB^=ABC^

⇒ˆAMK=ˆABH⇒AMK^=ABH^

Xét ΔAHBΔAHB và ΔAKMΔAKM có:

ˆAHB=ˆAKM=900AHB^=AKM^=900 (Vì AH⊥BC,AK⊥BMAH⊥BC,AK⊥BM

ˆABH=ˆAMKABH^=AMK^ (cmt)

Do đó ΔAHBΔAHB ∽ ΔAKMΔAKM (g - g)

Suy ra AHAK=ABAMAHAK=ABAM 

⇒AH.AM=AB.AK⇒AH.AM=AB.AK (đpcm)

a, Xét tam giác `ADC` và tam giác `MDB` có:

`DB=DC` `(g``t)`

\(\widehat{MDB}=\widehat{ADC}\) (2 góc đối đỉnh)

`DM=DA` `(g``t)`

`=>` Tam giác `ADC=` `MDB` `(c-``g-``c)`

`b,` vì tam giác `ADC=` Tam giác `MDB` (theo a)

`=> AC = BM` (2 cạnh tương ứng)

`=>` \(\widehat{ACD}=\widehat{MBD}\) (2 góc tương ứng)

mà 2 góc này nằm ở vị trí sole trong

`=> AC` //`BM` (d. hiệu nhận biết) (đpcm)

c, Vì Tam giác `ADC=` Tam giác `MDB` (theo a)

`=>`\(\widehat{DAC}=\widehat{DMB}\) (2 góc tương ứng)

Xét Tam giác `ABM` và Tam giác `MCA` có:

AM chung

\(\widehat{DAC}=\widehat{DMB}\) `(CMT)`

`BM = AC (CMT)`

`=>` Tam giác `ABM =` Tam giác `MCA (c-g-c)

d, *xl cậu câu này mình bí mất r:')

loading...

6 tháng 1 2023

cảm ơn nha

a: Xét ΔBAM có BA=BM và góc ABM=60 độ

nên ΔBAM đều

b: Xét ΔBAD và ΔBMD có

BA=BM

góc ABD=góc MBD

BD chung

=>ΔBAD=ΔBMD

=>góc BMD=góc BAD=90 độ

=>DM vuông góc BC

a) Xét ΔABC có

BC>AB(15cm>7cm)

mà góc đối diện với cạnh BC là \(\widehat{BAC}\)

và góc đối diện với cạnh AB là \(\widehat{ACB}\)

nên \(\widehat{BAC}>\widehat{ACB}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)