(x+2)(x+3)(x+8)(x+12)=4x\(^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x^3-4x^2-x+4=0\)
=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)
=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(x^2-1\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)
b: Sửa đề: \(x^3+3x^2+3x+1=0\)
=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)
=>\(\left(x+1\right)^3=0\)
=>x+1=0
=>x=-1
c: \(x^3+3x^2-4x-12=0\)
=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)
=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)
=>\(\left(x+3\right)\left(x^2-4\right)=0\)
=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
d: \(\left(x-2\right)^2-4x+8=0\)
=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)
=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x-2-4\right)=0\)
=>(x-2)(x-6)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
`(x+2)-2=0`
`=>x+2=0+2`
`=>x+2=2`
`=>x=2-2`
`=>x=0`
__
`(x+3)+1=7`
`=>x+3=7-1`
`=>x+3=6`
`=>x=6-3`
`=>x=3`
__
`(x+3)+4=12`
`=>x+3=12-4`
`=>x+3=8`
`=>x=8-3`
`=>x=5`
__
`(5x+4)-1=13`
`=>5x+4=13+1`
`=>5x+4=14`
`=>5x=14-4`
`=>5x=10`
`=>x=10:5`
`=>x=2`
__
`(4x-8)+3=12`
`=>4x-8=12-3`
`=>4x-8=9`
`=>4x=9+8`
`=>4x=17`
`=> x=17/4`
__
`3+(x-5)=14`
`=>x-5=14-3`
`=>x-5=11`
`=>x=11+5`
`=>x=16`
Xét x=2 , loại . \(=>x\in Z^+,x\ne2.\\ \)
\(=>a=x^2-4x+3\ge0,x\ne2.\\
\)
\(pt=>\left(\frac{1}{2}\right)^a+\left(\frac{2}{3}\right)^a+\left(\frac{3}{4}\right)^a=2x+\frac{1}{x^2},x\ne0\\
\)
BĐT nhỉ haha:V
Bài làm:
+ Nếu x = 0: Phương trình vô nghiệm
+ Nếu x khác 0:
Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+8\right)\left(x+12\right)=4x^2\)
\(\Leftrightarrow\left[\left(x+2\right)\left(x+12\right)\right]\left[\left(x+3\right)\left(x+8\right)\right]=4x^2\)
\(\Leftrightarrow\left(x^2+14x+24\right)\left(x^2+11x+24\right)=4x^2\)
\(\Leftrightarrow x\left(x+14+\frac{24}{x}\right)x\left(x+11+\frac{24}{x}\right)=4x^2\)
\(\Leftrightarrow\left(x+\frac{24}{x}+14\right)\left(x+\frac{24}{x}+11\right)x^2=4x^2\)
\(\Leftrightarrow\left(x+\frac{24}{x}+14\right)\left(x+\frac{24}{x}+11\right)=4\)
Đặt \(x+\frac{24}{x}=t\), thay vào ta được
\(Pt\Leftrightarrow\left(t+14\right)\left(t+11\right)=4\)
\(\Leftrightarrow t^2+25t+154-4=0\)
\(\Leftrightarrow t^2+25t+150=0\)
\(\Leftrightarrow\left(t+10\right)\left(t+15\right)=0\)
\(\Rightarrow\orbr{\begin{cases}t=10\\t=15\end{cases}}\)
+ Nếu \(t=15\Rightarrow x+\frac{24}{x}=15\Leftrightarrow x^2-15x+24=0\)
\(\Leftrightarrow\left(x^2-15x+\frac{225}{4}\right)-\frac{129}{4}=0\)
\(\Leftrightarrow\left(x-\frac{15}{2}\right)^2-\left(\frac{\sqrt{129}}{2}\right)^2=0\)
\(\Leftrightarrow\left(x-\frac{15}{2}-\frac{\sqrt{129}}{2}\right)\left(x-\frac{15}{2}+\frac{\sqrt{129}}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{15+\sqrt{129}}{2}\\x=\frac{15-\sqrt{129}}{2}\end{cases}}\)
+ Nếu \(t=10\Leftrightarrow x^2-10x+24=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=6\end{cases}}\)
Vậy tập nghiệm của phương trình \(S=\left\{\frac{15-\sqrt{129}}{2};\frac{15+\sqrt{129}}{2};4;6\right\}\)
Học tốt!!!!