K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để tìm m để khoảng cách từ gốc tọa độ đến đường thẳng (d) là căn 2, ta sử dụng công thức tính khoảng cách từ một điểm đến một đường thẳng.

Đường thẳng (d) có phương trình y = mx + 2. Khoảng cách từ gốc tọa độ đến đường thẳng (d) được tính bằng công thức:

d = |Ax + By + C| / căn(A^2 + B^2)

Với A, B, C lần lượt là hệ số của x, y và số hạng tự do trong phương trình đường thẳng.

Trong trường hợp này, A = -m, B = 1, C = -2. Và khoảng cách từ gốc tọa độ đến đường thẳng (d) là căn 2.

Vậy ta có phương trình:

|0 - m*0 - 2| / căn((-m)^2 + 1^2) = căn 2

|0 - 2| / căn(m^2 + 1) = căn 2

| - 2| / căn(m^2 + 1) = căn 2

2 / căn(m^2 + 1) = căn 2

Bình phương cả hai vế của phương trình:

4 / (m^2 + 1) = 2

4 = 2(m^2 + 1)

4 = 2m^2 + 2

2m^2 = 2

m^2 = 1

m = ±1

Vậy, để khoảng cách từ gốc tọa độ đến đường thẳng (d) là căn 2, ta có hai giá trị của m: 1 và -1.

25 tháng 1 2020

Bạn viết sai rồi, đường thẳng y-mx+2 =0 hay y=mx+2 vậy bạn?

6 tháng 2 2020

hjhj , thank bạn nha , nhưng câu này mk hỏi năm 2016 , giờ mình học lớp 12 rồi !!!

12 tháng 3 2023

- Gọi M(x0,y0) ,N(x1,y1) lần lượt là giao điểm của đường thẳng (d): \(y=\left(2m-3\right)x-1\) với trục tung, trục hoành \(\Rightarrow x_0=y_1=0\).

Vì M(0;y0) thuộc (d) nên: \(y_0=\left(2m-3\right).0-1=-1\)

\(\Rightarrow M\left(0;-1\right)\) nên \(OM=1\) (đvđd)

    \(N\left(x_1;0\right)\) thuộc (d) nên: \(\left(2m-3\right)x_1-1=0\Rightarrow x_1=\dfrac{1}{2m-3}\)

\(\Rightarrow N\left(\dfrac{1}{2m-3};0\right)\) nên \(ON=\dfrac{1}{2m-3}\) (đvđd)

*Hạ OH vuông góc với (d) tại H \(\Rightarrow OH=\dfrac{1}{\sqrt{5}}\)

Xét △OMN vuông tại O có OH là đường cao.

\(\Rightarrow\dfrac{1}{OM^2}+\dfrac{1}{ON^2}=\dfrac{1}{OH^2}\)

\(\Rightarrow1+\left(2m-3\right)^2=5\)

\(\Rightarrow2m-3=\pm2\)

\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=\dfrac{1}{2}\end{matrix}\right.\) (nhận)

 

 

12 tháng 3 2023

NV
1 tháng 8 2020

\(y=m\left(x+2\right)-1\Leftrightarrow m\left(x+2\right)-\left(y+1\right)=0\)

\(\Rightarrow\) d luôn đi qua điểm A cố định có tọa độ \(A\left(-2;-1\right)\)

Gọi H là chân đường vuông góc hạ từ O xuống d

Theo định lý đường xiên - đường vuông góc ta luôn có \(OH\le OA\)

\(\Rightarrow OH_{max}=OA\) khi H trùng A hay (d) vuông góc OA

Đường thẳng OA qua \(O\left(0;0\right)\)\(A\left(-2;-1\right)\) nên có pt \(y=\frac{1}{2}x\)

(d) vuông góc OA \(\Rightarrow\) d có hệ số góc bằng \(-2\)

\(\Rightarrow m=-2\)

10 tháng 12 2023

y=x+m-1

=>x-y+m-1=0

Khoảng cách từ O(0;0) đến (d) là:

\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot1+0\cdot\left(-1\right)+m-1\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{\left|m-1\right|}{\sqrt{2}}\)

Để \(d\left(O;\left(d\right)\right)=3\sqrt{2}\) thì \(\dfrac{\left|m-1\right|}{\sqrt{2}}=3\sqrt{2}\)

=>|m-1|=6

=>\(\left[{}\begin{matrix}m-1=6\\m-1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=7\\m=-5\end{matrix}\right.\)