K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2023

- Gọi M(x0,y0) ,N(x1,y1) lần lượt là giao điểm của đường thẳng (d): \(y=\left(2m-3\right)x-1\) với trục tung, trục hoành \(\Rightarrow x_0=y_1=0\).

Vì M(0;y0) thuộc (d) nên: \(y_0=\left(2m-3\right).0-1=-1\)

\(\Rightarrow M\left(0;-1\right)\) nên \(OM=1\) (đvđd)

    \(N\left(x_1;0\right)\) thuộc (d) nên: \(\left(2m-3\right)x_1-1=0\Rightarrow x_1=\dfrac{1}{2m-3}\)

\(\Rightarrow N\left(\dfrac{1}{2m-3};0\right)\) nên \(ON=\dfrac{1}{2m-3}\) (đvđd)

*Hạ OH vuông góc với (d) tại H \(\Rightarrow OH=\dfrac{1}{\sqrt{5}}\)

Xét △OMN vuông tại O có OH là đường cao.

\(\Rightarrow\dfrac{1}{OM^2}+\dfrac{1}{ON^2}=\dfrac{1}{OH^2}\)

\(\Rightarrow1+\left(2m-3\right)^2=5\)

\(\Rightarrow2m-3=\pm2\)

\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=\dfrac{1}{2}\end{matrix}\right.\) (nhận)

 

 

12 tháng 3 2023

NV
10 tháng 2 2020

Gọi A và B lần lượt là giao điểm của (d) với trục Ox và Oy

\(\left(2m-3\right)x-1=0\Rightarrow x=\frac{1}{2m-3}\Rightarrow A\left(\frac{1}{2m-3};0\right)\Rightarrow OA=\frac{1}{\left|2m-3\right|}\)

\(y=\left(2m-3\right).0-1=-1\Rightarrow B\left(0;-1\right)\Rightarrow OB=1\)

Gọi H là chân đường vuông góc hạ từ O xuống AB

Áp dụng hệ thức lượng trong tam giác vuông OAB:

\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\Rightarrow\frac{1}{\left(\frac{1}{\sqrt{5}}\right)^2}=\frac{1}{\frac{1}{\left(2m-3\right)^2}}+\frac{1}{1^2}\)

\(\Leftrightarrow\left(2m-3\right)^2+1=5\Rightarrow\left(2m-3\right)^2=4\Rightarrow\left[{}\begin{matrix}m=\frac{5}{2}\\m=\frac{1}{2}\end{matrix}\right.\)

22 tháng 9 2020

2) Đẳng thức điều kiện tương đương với \(\left(1+a\right)\left(1+b\right)\left(1+c\right)=1\Rightarrow1+a,1+b,1+c\ne0\)

Ta có: \(S=\frac{1}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}+\frac{1}{1+\left(1+b\right)+\left(1+b\right)\left(1+c\right)}\)\(+\frac{1}{1+\left(1+c\right)+\left(1+c\right)\left(1+a\right)}\)

\(=\frac{1}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}+\frac{1+a}{\left(1+a\right)\left[1+\left(1+b\right)+\left(1+b\right)\left(1+c\right)\right]}\)\(+\frac{\left(1+a\right)\left(1+b\right)}{\left(1+a\right)\left(1+b\right)\text{[}1+\left(1+c\right)+\left(1+c\right)\left(1+a\right)\text{]}}=\frac{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}=1\)

21 tháng 11 2022

a: Thay x=2 vào (2),ta đươc:

\(y=2\left(5-m\right)+2=10-2m+2=12-2m\)

Thay x=2 và y=12-2m vào (1),ta được:

\(\left(m+\dfrac{1}{2}\right)\cdot2-3=12-2m\)

=>2m+1-3=12-2m

=>2m-2=12-2m

=>4m=14

=>m=7/2

b: \(d\left(O;\left(1\right)\right)=\dfrac{\left|\left(m+\dfrac{1}{2}\right)\cdot0+\left(-1\right)\cdot0-3\right|}{\sqrt{\left(m+\dfrac{1}{2}\right)^2+1}}=\dfrac{3}{\sqrt{5}}\)

=>(m+1/2)^2=4

=>m+1/2=2 hoặc m+1/2=-2

=>m=-5/4 hoặc m=3/2

26 tháng 11 2022

a: y=(2m+1)x-2

=>(2m+1)x-y-2=0

\(d\left(O;d\right)=\dfrac{\left|0\cdot\left(2m+1\right)+0\cdot\left(-1\right)-2\right|}{\sqrt{\left(2m+1\right)^2+1}}=\dfrac{2}{\sqrt{\left(2m+1\right)^2+1}}\)

Theo đề, ta có: \(\sqrt{\left(2m+1\right)^2+1}=\sqrt{2}\)

=>(2m+1)^2=1

=>m=0 hoặc m=-1

b: Tọa độ A là:

y=0 và x=2/(2m+1)

=>OA=2/|2m+1|

Tọa độ B là:

x=0 và y=-2

=>OB=2

Theo đề, ta có: 1/2*OA*OB=1/2

=>4/|2m+1|=1

=>2m+1=4 hoặc 2m+1=-4

=>m=-5/2 hoặc m=3/2

25 tháng 3 2022

Hoành độ giao điểm (P) ; (d) tm pt 

\(\frac{1}{2}x^2-x-\frac{1}{2}m^2-m-1=0\)

\(\Leftrightarrow x^2-2x-m^2-2m-2=0\)

\(\Delta'=1-\left(-m^2-2m-2\right)=m^2+2m+3=\left(m+1\right)^2+2>0\)

Vậy pt luôn có 2 nghiệm pb 

Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-m^2-2m-2\end{cases}}\)

Ta có \(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=68\)

\(\Leftrightarrow8-6\left(-m^2-2m-2\right)=68\)

\(\Leftrightarrow6m^2+12m-48=0\Leftrightarrow m=2;m=-4\)

26 tháng 3 2022

Xét Pt hoành độ.......

\(\dfrac{1}{2}x^2=x+\dfrac{1}{2}m^2+m+1\\ \Leftrightarrow x^2-2x-m^2-2m-2=0\left(1\right)\)

Để ... thì Δ'>0

1+m2+2m+2>0 ⇔(m+1)2+2>0 (Hiển nhiên)

Với mọi m thì (1) sẽ có 2 nghiệm x1; x2.

*) Theo Hệ thức Viet ta có: 

S=x1+x2=2 và P=x1x2= -m2-2m-2

*)Ta có: 

\(\text{x^3_1 ​ +x ^3_2 ​ =68\Leftrightarrow(x_1+x_2)(x_1}^2-x_1x_2+x_2^2\left(\right)=68\\ \)

⇔(x1+x2)[(x1+x2)2-2x1x2-x1x2 ]=68 ⇔2[22-3(-m2-2m-2)]=68

⇔3m2+6m-24=0⇔m=2 và m=-4 

KL: